首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examined the genomic status of cyclin-dependent kinase-4 and -6 inhibitors, p16INK4,p15INK4B, and p18, in 40 primary lung cancers and 31 metastatic lung cancers. Alterations of the p16INK4 gene were detected in 6 (2 insertions and 4 homozygous deletions) of 22 metastatic non-small cell lung cancers (NSCLCs; 27%), but none were detected in 25 primary NSCLCs, 15 primary small cell lung cancers (SCLCs), or 9 metastatic SCLCs, indicating that mutation in the p16INK4 gene is a late event in NSCLC carcinogenesis. Although three intragenic mutations of the p15INK4B gene were detected in 25 primary NSCLCs (12%) and five homozygous deletions of the p15INK4B gene were detected in 22 NSCLCs (23%), no genetic alterations of the p15INK4B gene were found in primary and metastatic SCLCs. The p18 gene was wild type in these 71 lung cancers, except 1 metastatic NSCLC which showed loss of heterozygosity. We also examined alterations of these three genes and expression of p16INK4 in 21 human lung cancer cell lines. Alterations of the p16INK4 and p15INK4B genes were detected in 71% of the NSCLC cell lines (n = 14) and 50% of the NSCLC cell lines (n = 14), respectively, but there were none in the 7 SCLC cell lines studied. No p18 mutations were detected in these 21 cell lines. These results indicate that both p16INK4 and p15INK4B gene mutations are associated with tumor progression of a subset of NSCLC, but not of SCLC, and that p15INK4B mutations might also be an early event in the molecular pathogenesis of a subset of NSCLC.  相似文献   

2.
Absence of expression of the p16IKN4a gene product is commonly observed in mesothelioma tumors and cell lines, while wild-type pRB expression is maintained. We have examined the biologic and potential therapeutic role of re-expressing p16INK4a gene product in mesothelioma cells and tumors. Following transduction with a p16INK4a expressing adenovirus (Adp16), over-expression of p16INK4a in mesothelioma cells resulted in cell cycle arrest, inhibition of pRB phosphorylation, diminished cell growth, and eventual death of the transduced cells. Expression of p16INK4a protein was accompanied by decreased expression of pRB as detected by immunoblot and immunohistochemistry. Experiments in mesothelioma xenografts demonstrated inhibition of tumor formation, tumor growth arrest and diminished tumor size and spread. p16INK4a gene product expression was also demonstrated in intraperitoneal xenografts of human mesothelioma cells. These results demonstrate that p16INK4a gene transfer may play a therapeutic role in the treatment of mesothelioma.  相似文献   

3.
4.
5.
Cyclin D1 dysregulation and differential inactivation of p16INK4a and Rb have been observed in human lung cancer. In chemically induced mouse lung tumors, the p16INK4a gene is a target of inactivation, and Rb is reduced at the mRNA level (Northern blot) although similar at the protein level (Western blot) when compared to normal lung tissues. The expression of cyclin D1, cdk4, p16INK4a, and Rb protein was examined by immunohistochemistry in 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced mouse lung tumors. Immunohistochemical staining revealed exclusive nuclear staining of both cyclin D1 and cdk4 that was light to moderate in normal mouse lung tissues, but intense in lung adenomas and adenocarcinomas. Western blot analysis confirmed the increased expression of cyclin D1 and cdk4 in lung tumors compared to normal lung. Immunohistochemical analyses of lung tumors showed focal areas which lacked p16INK4a staining. Expression of p16INK4a, as determined by RT-PCR, was variable in lung tumors. Mutations in p16INK4a were not found by SSCP analysis. Immunohistochemical analyses of normal lung tissues showed intense staining for Rb protein in alveolar epithelial cells and in other lung cell types; however, in the lung tumors the staining intensity was reduced and the distribution was altered. Expression of Rb was detected in normal lung tissues but was barely detectable by Northern blot hybridization in lung tumors. Western blot analysis indicated the presence of both hypophosphorylated and hyperphosphorylated Rb protein in lung tumors and in normal lung tissues. These results suggest that alterations in the cell cycle proteins, cyclin D1, cdk4, p16INK4a, and Rb, may play a role in the acquisition of autonomous growth by adenomas. Furthermore, they demonstrate the importance of immunohistochemical studies to examine expression in tissues that contain multiple cell types, such as the lung, and in tumors that by nature are heterogeneous.  相似文献   

6.
Paraffin sections (n = 168, 27 benign, 16 low malignant potential [LMP] and 125 malignant tumours) from epithelial ovarian tumours were evaluated immunohistochemically for expression of retinoblastoma gene product (pRB) and p53 protein, and the relationship among pRB, p53 and cyclin-dependent kinase inhibitor 2 (CDKN2) gene product p16INK4A (p16) was analysed, following our previous study of p16. Forty-one percent of the benign, 50% of the LMP and most (71%) of the malignant tumours showed high pRB expression. High expression of pRB (>50% pRB-positive cells) significantly correlated with non-mucinous histological subtypes. Reduced pRB expression, substage and residual disease were significant predictors for poor prognosis in stage I patients. All the benign and most of the LMP (81%) tumours were in either the p53-negative or low p53-positive category, but nearly half of the malignant tumours had high p53 expression. High p53 accumulation was found in non-mucinous, high grade and late stage tumours. For well-differentiated carcinomas, high p53 expression was a predictor of poor prognosis. However, even though high p53 expression was not associated with histological subtype, stage or the presence of residual disease, high p53 expression was not an independent predictor when all clinical parameters were combined. For all ovarian cancers, a close correlation was found between high p53 and high p16 expression. The relationship between the expression of pRB and p16 depended on tumour stage. In stage I tumours, high pRB was associated with low p16 reactivity. On the other hand, most advanced tumours showed both high pRB and high p16 reactivity.  相似文献   

7.
The p15(INK4B), p16(INK4) and p18 genes are members of the gene family coding for inhibitors of cyclin-dependent kinases 4 and 6. p15(INK4B) and p16(INK4) are located at 9p21, a chromosomal region frequently deleted in many human neoplasms. To examine the role of these 3 genes in lung carcinogenesis, somatic mutations within the genes were analyzed by single-strand conformation polymorphism and DNA sequencing in 71 non-small-cell lung cancer (NSCLC) samples. Six somatic mutations in the p16(INK4) gene and 3 cases with a polymorphic allele were observed. Loss of heterozygosity in the p18 gene was found in 1 sample. We did not find any intragenic mutations in the p15(INK4B) or p18 genes. We conclude that p16(INK4) mutations play a role in the formation of some NSCLCs, whereas the involvement of p15(INK4B) and p18 is uncommon.  相似文献   

8.
Homozygous deletions of the tumor suppressor gene p16INK4A and deficiency of methylthioadenosine phosphorylase (MTAP), both located on chromosome 9p21, have been independently reported in non-small cell lung cancer (NSCLC). To determine the frequency of co-deletion of these two genes, we investigated 50 samples of primary NSCLC using a quantitative PCR-ELISA. All specimens were fixed in formalin, paraffin embedded and stored until assayed. Histologic subtypes included 25 adenocarcinomas (50%), 21 squamous cell carcinomas (42%) and four large cell carcinomas (8%). Homozygous deletions of MTAP exon 8 could be detected in 19 of 50 NSCLC samples (38%). Adenocarcinoma (11 of 25, 44%) showed a higher deletion frequency than squamous cell carcinoma (six of 21, 29%). In contrast, homozygous p16INK4A deletions were detected in only nine of 50 (18%) samples using specific primers for p16INK4A exon 1alpha. No difference between the histological subtypes and p16INK4A deletion frequency was observed. We further investigated the ten samples with MTAP deletions but intact p16INK4A exon 1alpha with primers specific for p16INK4A exon 3, the exon nearest to MTAP exon 8. Interestingly, none of the ten samples had deletion of the p16INK4A exon 3 coding region. Fine mapping analysis performed in ten samples showed a frequent breakpoint between MTAP exon 4 and exon 5. In addition, p16 protein expression could not be detected in five out of six samples with intact p16 but deleted MTAP locus. These data show a high frequency of homozygous MTAP deletions in NSCLC which is associated with detectable co-deletion of p16INK4A in only half of the cases. This result suggests the existence either of another tumor suppressor gene telomeric of p16INK4A or of deletions involving 3'-untranslated (3'-UTR) regulatory regions of p16INK4A that can interfere with its expression or function.  相似文献   

9.
10.
11.
12.
Transforming growth factor beta 1 (TGF-beta 1) is a potent inhibitor of keratinocyte proliferation and a potential tumor suppressor of squamous cell carcinomas (SCCs). TGF-beta 1 exerts its antiproliferative effects by inhibiting key transitions required for progression from G1 to the S phase of the cell cycle, exemplified by a rapid reduction of c-MYC and inhibition of the G1 cyclin/cyclin-dependent kinases by induction of their inhibitors p21waf1, p27kip1, and p15INK4B. A significant majority of a new series of human SCC cell lines were found to be as sensitive as primary human epidermal keratinocytes to TGF-beta 1 growth inhibition. Only a minority of cell lines derived from late-stage tumors were resistant. An early and rapid increase in p21waf1 and reduction in c-MYC protein levels were important concomitants for TGF-beta 1 growth inhibition; these changes occurred exclusively in each of the sensitive cell lines. Expression of p15INK4B was found to be neither necessary nor sufficient for TGF-beta 1 growth arrest in the sensitive and resistant cell lines, respectively. TGF-beta 1 induced alterations in other cell cycle regulatory molecules, cyclin-dependent kinase 4, cyclin D1, pRB, and p27Kip1, occurred late and were dispensable in some of the sensitive cell lines. Expression of exogenous mycER fusion protein in one of the sensitive cell lines did not render the cells resistant to TGF-beta 1-induced growth arrest nor prevent p21waf1 induction or down-regulation of both c-MYC and mycER proteins. However, in TGF-beta 1-resistant subclones of sensitive mycER-expressing cells, p21waf1 was not induced, whereas both c-MYC and mycER protein levels decreased following TGF-beta 1 treatment. We conclude that TGF-beta 1 activates multiple cell cycle inhibitory pathways dependent upon p21waf1 induction and c-MYC degradation and that it does not function as a tumor suppressor in the majority of SCCs.  相似文献   

13.
BACKGROUND: D-type cyclins, in association with the cyclin-dependent kinases CDK4 and CDK6, promote progression through the G1 phase of the cell cycle. CDK activity is modulated by inhibitors such as p15INK4b and p16INK4a. Loss of function of p15INK4b and p16INK4a (multiple tumor suppressor-I and CDK4 inhibitor) determines impairment in the control of the cell cycle and contributes to the transformation of several cell types. METHODS: The authors examined 20 thyroid neoplasms (12 papillary carcinomas and 8 follicular adenomas) and 4 human thyroid carcinoma cell lines for gene mutations and epigenetic modifications of the p15INK4b and p16INK4a genes by Southern blot analysis, single strand conformation polymorphism, and a polymerase chain reaction-based methylation assay. RESULTS: Abnormalities of p16 were found in the four cell lines studied. In follicular carcinoma (WRO) cells, both the p15 and p16 genes were homozygously deleted. Undifferentiated carcinoma (FRO) cells had a nonsense point mutation at codon 72 (CGA-TGA, Arg-Stop) of p16, whereas the poorly differentiated papillary carcinoma (NPA) line harbored a point mutation at the exon 1-intron 1 boundary that altered the donor splicing site and caused an aberrantly spliced form of p16INK4a. Furthermore, p16 allelic loss was evident in the DNA of both FRO and NPA cells. Finally, p16 expression was absent in the ARO cell line, likely due to a de novo methylation of exon 1 of p16INK4a. Regarding the primary thyroid tumors, a missense point mutation at codon 91 was found in 1 of 12 papillary thyroid carcinomas (GCC-GTC, Ala-Val). No mutations were found in follicular adenomas. However, in 6 of 20 primary tumors there was hypermethylation at exon 1 of p16. CONCLUSIONS: The high prevalence of p15 and p16 mutations in the cell lines described suggests involvement of these genes in immortalization in vitro. The p16 defects may have preexisted in a small subclone of the primary tumor that were selected for in vitro. Alternatively, p16 mutations may have arisen de novo during cell culture. Mutations of p15INK4b and p16INK4a do not appear to be critical events in the development of follicular adenomas or papillary carcinomas. However, de novo methylation of the 5' CpG island of p16 is common in primary tumors, indicating that the function of this gene may be lost as an epigenetic event during disease progression.  相似文献   

14.
PURPOSE: A newly recognized class of INK4 family of cyclin-dependent kinase inhibitors CDKIs) include its prototype, p16 (INK4A/MTS1/CDKN2), and three others, p15 (INK4B/MTS2), p18 (INK4C), and p19 (INK4D). The putative tumor suppressor gene, p16 is frequently altered in certain neoplasms and many cell lines. The potential role of INK4 CDKIs in pathogenesis of prostate carcinoma was studied. MATERIALS AND METHODS: Thirty-two primary prostate cancer samples and two prostate cancer cell lines were examined for alterations of the p16, p15, p18, and p19 genes by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and Southern blot analysis. RESULTS: Alteration of the p16 gene was found in one of 32 primary prostate cancer samples by PCR-SSCP. DNA sequencing of the sample showed a 24-basepair insertion in exon 1 of the p16 gene at codon 11. No other mutations were found in p15, p18, or p19 genes by PCR-SSCP. Furthermore, none of the p16, p15, p18, or p19 genes had alterations by Southern blot analysis. CONCLUSIONS: These results indicate that structural abnormalities of the INK4 CDKIs is a rare event in prostate carcinoma, and the loss of function of INK4 CDKIs by other mechanisms, such as methylation should be further explored.  相似文献   

15.
The CDKN2A gene located on chromosome region 9p21 encodes the cyclin-dependent kinase-4 inhibitor p16/INK4A, a negative cell cycle regulator. We analyzed p16/INK4A expression in different types of non-Hodgkin's lymphoma to determine whether the absence of this protein is involved in lymphomagenesis, while also trying to characterize the genetic events underlying this p16/INK4A loss. To this end, we investigated the levels of p16/INK4A protein using immunohistochemical techniques in 153 cases of non-Hodgkin's lymphoma, using as reference the levels found in reactive lymphoid tissue. The existence of gene mutation, CpG island methylation, and allelic loss were investigated in a subset of 26 cases, using single-strand conformational polymorphism and direct sequencing, Southern Blot, polymerase chain reaction, and microsatellite analysis, respectively. Loss of p16/INK4A expression was detected in 41 of the 112 non-Hodgkin's lymphomas studied (37%), all of which corresponded to high-grade tumors. This loss of p16/INK4A was found more frequently in cases showing tumor progression from mucosa-associated lymphoid tissue low-grade lymphomas (31 of 37) or follicular lymphomas (4 of 4) into diffuse large B-cell lymphomas. Analysis of the status of the p16/INK4A gene showed different genetic alterations (methylation of the 5'-CpG island of the p16/INK4A gene, 6 of 23 cases; allelic loss at 9p21, 3 of 16 cases; and nonsense mutation, 1 of 26 cases). In all cases, these events were associated with loss of the p16/INK4A protein. No case that preserved protein expression contained any genetic change. Our results demonstrate that p16/INK4A loss of expression contributes to tumor progression in lymphomas. The most frequent genetic alterations found were 5'-CpG island methylation and allelic loss.  相似文献   

16.
The p16(INK4a) (p16) tumor suppressor gene can be inactivated by promoter region hypermethylation in many tumor types including lung cancer, the leading cause of cancer-related deaths in the U.S. We have determined the timing of this event in an animal model of lung carcinogenesis and in human squamous cell carcinomas (SCCs). In the rat, 94% of adenocarcinomas induced by the tobacco specific carcinogen 4-methylnitrosamino-1-(3-pyridyl)-1-butanone were hypermethylated at the p16 gene promoter; most important, this methylation change was frequently detected in precursor lesions to the tumors: adenomas, and hyperplastic lesions. The timing for p16 methylation was recapitulated in human SCCs where the p16 gene was coordinately methylated in 75% of carcinoma in situ lesions adjacent to SCCs harboring this change. Moreover, the frequency of this event increased during disease progression from basal cell hyperplasia (17%) to squamous metaplasia (24%) to carcinoma in situ (50%) lesions. Methylation of p16 was associated with loss of expression in both tumors and precursor lesions indicating that both alleles were functionally inactivated. The potential of using assays for aberrant p16 methylation to identify disease and/or risk was validated by detection of this change in sputum from three of seven patients with cancer and 5 of 26 cancer-free individuals at high risk. These studies show for the first time that an epigenetic alteration, aberrant methylation of the p16 gene, can be an early event in lung cancer and may constitute a new biomarker for early detection and monitoring of prevention trials.  相似文献   

17.
18.
Mantle cell lymphoma (MCL) is molecularly characterized by bcl-1 rearrangement and cyclin D1 gene overexpression. Some aggressive variants of MCL have been described with blastic or large cell morphology, higher proliferative activity, and shorter survival. The cyclin-dependent kinase inhibitors (CDKIs) p21Waf1 and p16INK4a have been suggested as candidates for tumor-suppressor genes. To determine the role of p21Waf1 and p16INK4a gene alterations in MCLs, we examined the expression, deletions, and mutations of these genes in a series of 24 MCLs, 18 typical, and 6 aggressive variants. Loss of expression and/or deletions of p21Waf1 and p16INK4a genes were detected in 4 (67%) aggressive MCLs but in none of the typical variants. Two aggressive MCLs showed a loss of p16INK4a expression. These cases showed homozygous deletions of p16INK4a gene by Southern blot analysis. An additional aggressive MCL in which expression could not be examined showed a hemizygous 9p12 deletion. Loss of p21Waf1 expression at both protein and mRNA levels was detected in an additional aggressive MCL. No p21Waf1 gene deletions or mutations were found in this case. The p21Waf1 expression in MCLs was independent of p53 mutations. The two cases with p53 mutations showed p21Waf1 and p16INK4a expression whereas the 4 aggressive MCLs with p16INK4a and p21Waf1 gene alterations had a wild-type p53. p21Waf1 and p16INK4a were expressed at mRNA and protein levels in all typical MCLs examined. No gene deletions or point mutations were found in typical variants. Two typical MCLs showed an anomalous single-stranded conformation polymorphism corresponding to the known polymorphisms at codon 148 of p16INK4a gene and codon 31 of p21Waf1 gene. These findings indicate that p21Waf1 and p16INK4a alterations are rare in typical MCLs but the loss of p21Waf1 and p16INK4a expression, and deletions of p16INK4a gene are associated with aggressive variants of MCLs, and they occur in a subset of tumors with a wild-type p53 gene.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号