首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The research of rare earths for the synthesis of materials with improved mechanical performance is of great interest when they are considered for potential applications in the automotive industry. In this regard, the effect on the mechanical properties and microstructure of the automotive A356 aluminum alloy reinforced with 0.2 (wt.%) Al-6Ce-3La (ACL) was investigated. The ACL was added to the melted A356 alloy in the as-received condition and processed by mechanical milling. In the second route, the effect of the ACL processed by mechanical milling and powder metallurgy techniques was investigated, and compared with the results obtained from the A356 alloy strengthened with ACL in the as-received condition. Microstructural properties were evaluated by means of X-ray diffraction in order to observe the solubility of Ce/La in the Al matrix. In addition, electron microscopy was employed in order to investigate the effect of milling time on the size and morphology of La/Ce phase under milling process. Mechanical properties of the A356 alloy modified with ACL were measured by hardness and tensile test. For comparison unmodified specimens of the A356 were characterized according to the previous procedure. The microstructural and mechanical characterization was carried out in specimens after solution and artificial aging. Observations in scanning electron microscopy indicated a homogeneous dispersion of La/Ce phases by using both routes; however, mechanical results, in the modified A356 alloy with the ACL in the as-received condition, showed an improvement in the mechanical performance of the A356 alloy over that reinforced with the ACL mechanically milled.  相似文献   

2.
The effects of erbium addition on the rheological properties and microstructure of a semisolid A356 alloy were studied. The semisolid slurries were prepared through the serpentine channel technique before they were thixoformed using parallel-plate compression with cylindrical discs. The grain and globule size decreases as the Er content increases, resulting in an improved and uniform distribution of spherical primary α-Al phase within the semisolid slurry. The addition of the Er modifies the grain morphology and size of the α-Al grains, resulting in a better and more uniform distribution of spherical primary α-Al phase within the semisolid slurry. As a result, rheocast quality index increases with the addition of Er, which is suitable for the thixoforming process. The A356 alloy without Er has the highest viscosity herein. The viscosity decreases, and the flow characteristics of the semisolid feedstock are expected to improve when Er is added as a result of the refinement of primary α-Al and modification of eutectic silicon. Furthermore, the refined semisolid A356 alloys with Er show a slightly larger fraction of high-angle grain boundaries compared to that for the unre?ned alloy.  相似文献   

3.
Study of corrosion protection of the composite films on A356 aluminum alloy   总被引:1,自引:0,他引:1  
Composite films were fabricated on A356 aluminum alloy by combined anodizing and rare earth deposition.The corrosion protection effect and corrosion behavior of the composite films in 3.5% NaCl solution were studied by electrochemical impedance spectroscopy(EIS).SEM observation indicated that the rare earth Ce film completely sealed the porous structure of the anodic film,and the compositefilms composed of anodic film and Ce film were compact and integrated.According to the characteristics of EIS,the EIS plots of the composite films at different immersion times were simulated using the equivalent circuits of Rsol(QceRce)(QaRa),Rsol(QceRce)(QpRp)(QbRb) andRsol(QpRp)(QbRb) models,respectively.The test results showed that the Ce film at the outer layer of the composite films had good protectioneffect at the initial stage of the immersion corrosion.It effectively helped the anodic film at the inner layer to prevent chloride irons frompenetrating the aluminum alloy matrix.After 18 days,the Ce film lost its anticorrosive property,and the anodic film took the leading role ofthe corrosion protection.When the corrosion time was up to 42 days,the aluminum matrix was not corroded yet.Thus,the higher protectiondegree of the composite films for A356 aluminum alloy was attributed to the synergism effects of anodic film and rare earth Ce film.  相似文献   

4.
The morphology analysis and electrochemical method were used to study the corrosion behavior of LaFe11.6Si1.4 alloy of copper ion implantation. X-ray photoelectron spectroscopy (XPS) and atomic emission spectroscopy (AES) research results showed that a 15 nm-thick oxide film was formed on the surface of sample, and the copper content reached the highest value at 60 nm with a normal distribution. Immersion experiments indicated that the corrosion happened in the copper-poor zone firstly and a galvanic connection was formed among different zones on the surface due to the inhomogeneous distribution of copper. Electrochemical experiment results showed that the corrosion was serious when the ion acceleration voltage increased, and the high acceleration could reduce the thermodynamic performance of corrosion of LaFe11.6Si1.4 alloy.  相似文献   

5.
The dry sliding wear behavior of extruded Mg-9Sn and Mg-9Sn-3Yb alloys through pin-on-disc configuration was investigated at room temperature. Coefficient of friction, wear rate and wear resistance of extruded Mg-9Sn and Mg-9Sn-3Yb alloys were measured within a load range of 20–240 N and 20–380 N at a sliding velocity of 0.785 m/s, respectively. The wear tracks, worn surface and wear edge were observed using a scanning electron microscope and an energy dispersive X-ray spectrometer. The results indicated that wear rate, coefficient of friction and wear resistance changed with increasing applied load due to different wear mechanisms. Six wear mechanisms, namely adhesion, abrasion, oxidation, delamination, thermal softening and melting, were observed for both extruded alloys. The extruded Mg-9Sn-3Yb alloy exhibited good wear resistance compared with extruded Mg-9Sn alloy, which was mainly attributed to a large number of volume fraction of Mg2 Sn particles, the formation of thermal stable Mg2(Sn,Yb) particles and good elevated temperature mechanical properties.  相似文献   

6.
In this article, it was suggested a TbFe/Co/Dy trilayered GM (Giant Magnetostrictive) film type actuator and investigated the magnetomechanical characteristics of the actuator for micro application. The trilayered films were fabricated at different thickness ratios to get an optimized structure. TbFe had positive GM properties, and cobalt, dysprosium layers made the magnetostriction property of composite film increase in low magnetic field. To fabricate the Si based microactuator with trilayered film, micromachining processes including RIE (Reactive Ion Etching) and selective DC magnetron sputtering techniques were combined. The deposited film thicknesses were measured by X-ray diffraction (XRD). As a result, the magnetization of the film on the fabricated actuator was observed to characterize the magnetic properties of the TbFe/Co/Dy film using VSM (Vibrating Sample Magnetometer). The magnetostriction of the actuator was determined by measuring the differences of curvature of the film coated silicon substrates using the optical cantilever method, and the deflections were also estimated under the external magnetic field lower than 0.5T for micro-system applications.  相似文献   

7.
Cerium-zirconium composite oxides with high performance were synthesized by a co-precipitation method, using zirconium oxychloride and rare earth chloride as raw materials. The effects of precipitate aging time on the properties of cerium-zirconium composite oxides were investigated. The prepared cerium-zirconium composite oxides were characterized by X-ray diffraction(XRD), BET specific surface area, pulsed oxygen chemical adsorption, H2 temperature-programmed-reduction(H2-TPR), scanning electron microscopy(SEM), etc. The results showed that the precipitate aging time caused great effects on the properties of cerium zirconium composite oxides. With the increase of aging time, the cerium zirconium composite oxides showed enhanced specific surface area, good thermal stability, and high oxygen storage capacity(OSC). The best performance sample was obtained while the precipitate aging time up to 48 h, with the specific surface area of 140.7 m2/g, and OSC of 657.24 μmolO2/g for the fresh sample. Even after thermal aged under 1000 oC for 4 h, the aged specific surface area was 41.6 m2/g, moreover with a good OSC of 569.9 μmolO2/g.  相似文献   

8.
9.
The influence of Nd on the microstructures,tensile properties and fracture behavior of cast Al-18 wt.%Mg2Si in situ metal matrix composite was investigated.Experimental results showed that,after introducing a proper amount of Nd,both primary and eutectic Mg2Si in the Al-18 wt.%Mg2Si composite were well modified.The morphology of primary Mg2Si was changed from irregular or dendritic to polyhedral shape,and its average particle size was significantly decreased from 47.5 to 13.0 μm.Moreover,the morphology of the eutectic Mg2Si phase was altered from flake-like to a thin laminar,short fibrous or dot-like structure.Tensile tests revealed that Nd addition improved the tensile strength and ductility of the material.Compared with those of unmodified composite,the ultimate tensile strength and percentage elongation with 0.5% Nd were increased by 32.4% and 200%,respectively.At the same time,Nd addition changed the fracture behavior from brittle to ductile.  相似文献   

10.
Nano-La2O3 was modified with the vinyltrimethoxylsilane by hydrolysis and a novel poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) based composite polymer electrolyte doped with the modified nano-La2O3 was prepared by phase inversion method. The physicochemical properties were studied by SEM, FT-IR, XRD, TG and electrochemical methods. The results of FT-IR indicated that the nano-La2O3 was successfully modified with vinyltrimethoxylsilane. The XRD analysis showed that the incorporation of modified nano-La2O3 into the polymer electrolyte membranes could effectively reduce the crystallinity of PVDF-HFP, and the characterizations also suggested that thermal stability and electrochemical stability window could reach to 382°C and 5.1V, respectively; the reciprocal temperature dependence of ionic conductivity followed Vogel-Tamman-Fulcher (VTF) relation, ionic conductivity at room temperature was up to 3.5×10-3S/cm and lithium ions transference number was up to 0.42; the interfacial resistance increased at initial value about353Ω/cm2 and reached a steady value about 559Ω/cm2 after 5d storage at 30°C. The fabricated Li/As-prepared electrolytes/LiCoO2 coin cell showed excellent rate and cycle performances.  相似文献   

11.
The effects of the rare earth element yttrium(Y) and hot extrusion on the microstructure and mechanical properties of A356 alloy were investigated by mechanical properties testing and microstructure observation. The results indicate that the addition of Y improves the microstructure of the as-cast alloy. The distribution of primary α-Al is uniform and orderly. The long needle-like eutectic Si phases and β-Fe phases turn to strips and short rods. When the content of Y increases to 0.2 wt%, the mean diameter of aAl(40.3 μm) and the aspect ratio of the eutectic Si phase(2.3) reach the minimum values, which are68.9% and 86.1% lower, respectively, than that of the alloy without Y addition. Under extrusion stress, the shape of the eutectic Si phase is changed from long rod-like to near grain-like after solution treatment.The size of the eutectic Si phase is significantly reduced. The needle-like β-Fe phases are squeezed and broken. The mechanical properties of the as-extruded alloy are significantly improved compared to the as-cast alloy. When the rare earth content is 0.2 wt%, the ultimate tensile strength, hardness and elongation of the alloy reach the maximum values, which are 328.2 MPa, 110.4 HV and 21.3%, respectively, and increase by 42.01%, 37.71% and 481.91%, respectively, in comparison to the as-cast alloy without Y addition.  相似文献   

12.
13.
Maximumenergyproduct (BH) maxisakeychar acteristicofapermanentmagnet (PM ) .Theoptimal(BH) maxislimitedbythevalueofJr2 / 4 μ0 (Jrrema nence)correspondingtoanidealrectangularhysteresisloopwhencoercivityμ0 HcisatleastlargerthanJr/ 2 .FormostrareearthPM ,thecoercivityisfarlargerthantheremanence[1,2 ] .Thus ,remanenceenhance mentbecomesanimportantroleindeveloping(BH) max.Sincehighremanencewasfoundinisotrop icnanostructuredPM ,muchefforthasbeenpaidtoachievehighperformancePM[3,4 ] .Thehigh…  相似文献   

14.
Ammonia (NH3) has an important use in the chemical industry and is widely found in industrial wastewater. For this investigation of copper-based rare earth composite metal materials, aqueous solutions containing 400 mg/L of ammonia were oxidized in a batch-bed reac-tor with a catalyst prepared by the co-precipitation of copper nitrate, lanthanum nitrate and cerium nitrate. Barely any of the dissolved ammo-nia was removed by wet oxidation without a catalyst, but about 88% of the ammonia was reduced during we...  相似文献   

15.
Effect of La_2O_3 on the wear behavior of MoSi_2 at high temperature   总被引:3,自引:0,他引:3  
Wear behaviors of MoSi2 doped with La2O3 against SiC under different loads at 1000 oC in air were investigated by using an XP-5 type high temperature friction and wear tester. The worn surfaces and phases of the samples were analyzed by scanning electron microscopy (SEM) and X-ray diffraction, respectively. Results showed that the addition of La2O3 could obviously improve wear resistance of MoSi2. Because of the formation of MoO3 phase on the worn surface, La2O3/MoSi2 composite mainly exhibited oxidation and abrasive wear, which was different from the wear form of MoSi2 such as adhesion, oxidation and abrasion.  相似文献   

16.
High cycle fatigue behavior of die cast AZ91D magnesium alloy with different Nd contents was investigated.Axial mechanical fatigue tests were conducted at the stress ratio R=0.1 and the fatigue strength was evaluated using up-to-down load method on specimens of AZ91D with different Nd contents.The results showed that the grain of AZ91D alloy was refined,the size and amount of β-Mg17Al12 phase decreased and distributed uniformly with increasing Nd content.At the number of cycles to failure,Nf=107,the fatigue...  相似文献   

17.
18.
The corrosion behavior of plasma sprayed 8YSZ(ZrO2 stabilized by 8 wt.%Y2O3)coating on the surface of carbon steel in seawater was investigated.The electrochemical impedance spectroscopy was used as a non-destructive evaluation technique to monitor the protection properties of the coating when it was immersed in seawater,and corrosion products were characterized by scanning electron microscopy,energy dispersive spectrometry and X-ray photoelectron spectroscopy.The results indicated that three time constants were obtained during the initial immersion period,and then a new time constant appeared due to the formation of rust layer,which was corresponding to the corrosion process.Corrosion products were formed on the coating surface as well as inside the coating,and the crystalline composition of the rust layer mainly consisted of γ-FeOOH.  相似文献   

19.
Bondingofsiliconnitrideceramicswithoxideglasssolderhasbeenachievedverygreatsuccess[1~ 11] .Owingtothelowersofteningtemperatureofresidualglassinjoint ,thehightemperaturestrengthofjointhasbeendeterio rated .Inordertoimprovethejointstrengthatelevatedtemperatu…  相似文献   

20.
In order to investigate the influence of MnO2 modification methods on the catalytic performance of CuO/CeO2 catalyst for NO reduction by CO,two series of catalysts(xCuyMn/Ce and xCu/yMn/Ce) were prepared by co-impregnation and stepwise-impregnation methods,and characterized by means of X-ray diffraction(XRD),Raman spectra,H2-temperature programmed reduction(H2-TPR),in situ diffuse reflectance infrared Fourier transform spectra(in situ DRIFTS) techniques.Furthermore,the catalytic performances of these catalysts were evaluated by NO+CO model reaction.The obtained results indicated that:(1) The catalysts acquired by co-impregnation method exhibited stronger interaction owing to the more sufficient contact among each component of the catalysts compared with the catalysts obtained by stepwise-impregnation method,which was beneficial to the improvement of the reduction behavior;(2) The excellent reduction behavior was conducive to the formation of low valence state copper species(Cu+/Cu0) and more oxygen vacancies(especially the surface synergetic oxygen vacancies(SSOV,Cu+-□-Mn(4–x)+)) during the reaction process,which were beneficial to the adsorption of CO species and the dissociation of NO species,respectively,and further promoted the enhancement of the catalytic performance.Finally,in order to further understand the difference between the catalytic performances of these catalysts prepared by co-impregnation and stepwise-impregnation methods,a possible reaction mechanism(schematic diagram) was tentatively proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号