首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrocatalytic activity and stability of Pt/C catalyst modified by using CeO_2-ZrO_2 mixed oxides for the alcohols electrochemical oxidation as probes were investigated. The catalyst samples were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The electrochemical properties were measured by a three electrode system on electrochemical workstation(IVIUM). The results showed that the presence of CeO_2-ZrO_2 might be associated with the presence of Pt, which indicated that possibly there was synergistic effect between CeO_2-ZrO_2 and Pt nanoparticles. The electrocatalytic activity and stability of Pt-MO_x/C(M=Ce, Zr) for methanol and ethanol oxidation was better than that of Pt-CeO_2/C, which was attributed to that CeO_2-ZrO_2 composited oxides enhanced oxygen mobility and promoted oxygen storage capacity(OSC). Furthermore, the best performance was found when the molar ratio of CeO_2 to ZrO_2 was 2:1 for the oxidation of methanol and ethanol. The forward peak current density of Pt-MO_x/C(M=Ce, Zr, Ce:Zr=2:1) towards the methanol electrooxidation was about 3.8 times that of Pt-CeO_2/C. Pt-MO_x/C(M=Ce, Zr) appeared to be a promising and less expensive methanol oxidation anode catalyst.  相似文献   

2.
Zr-doped CuO-CeO_2 catalysts for CO selective oxidation were designed and prepared by the hydrothermal method and coprecipitation. The experimental samples were characterized by means of N_2 adsorption-desorption isotherms, powder X-ray diffraction, temperature-programmed reduction and Xray photoelectron spectroscopy. It is observed that the catalyst prepared by hydrothermal method exhibits larger specific surface area, smaller crystalline size and higher dispersion of active components compared with those of the catalyst obtained by coprecipitation. Meanwhile, redox properties of copper oxide are improved significantly and highly dispersed copper species providing CO oxidation sites are present on the surface. Furthermore, adsorptive centers of CO and active oxygen species increase on the copper-ceria interfaces. The Zr-doped CuO-CeO_2 catalyst prepared by hydrothermal method possesses superior catalytic activity and selectivity for selective oxidation of CO at low temperature compared with those of the sample prepared by coprecipitation. The temperature corresponding to 50% CO conversion is only 73 ℃ and the temperature span of total CO conversion is expanded from 120 to 160 ℃.  相似文献   

3.
A novel fly ash cenospheres(FACs)-supported CeO2 composite(CeO2/FACs) was successfully synthesized by the modified pyrolysis process.The prepared composites were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), X-ray photoelectron spectroscopy(XPS), and diffuse reflection spectra(DRS) techniques.XRD results indicated that the CeO2 film coated on cenospheres was a face-centered cubic structure.SEM images confirmed that the CeO2 film was relatively compact.XPS results showed that Ce was present as both Ce4+ and Ce3+ oxidation states in CeO2 film coated on FACs substrate.The bandgap of the composite was narrower compared with the pure CeO2.The as-prepared material exhibited good photocatalytic activity for the decolorization of methylene blue(MB) under visible light irradiation, and the first-order reaction rate constant(k) of 0.0028 min–1 for CeO2/FACs composite was higher than 0.0015 min–1 of pure CeO2.The fact that they floated on water meant that CeO2/FACs composites were easily recovered from water by filtration after the reaction.The recycling test revealed that the composites were quite stable during the MB photocatalytic decolorization.The CeO2/ FACs catalyst was therefore promising for practical use in the degradation of pollutants or water cleanup.  相似文献   

4.
In this study, the Ti/SnO2–RuO2 electrodes with different Yb contents were prepared by sol–gel method and thermal decomposition method, and the surface morphology and crystal structure of the electrodes were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD), the electrochemical properties of the electrodes were tested by linear sweep voltammetry (LSV) and cyclic voltammetry (CV). The electrochemical oxidation device was constructed with Yb-doped Ti/SnO2–RuO2 electrode as the anode and titanium plate as the cathode, and the electrochemical oxidation effect and product changes of the anode on coking wastewater were investigated. The results show that the surface of the electrode is flat with high crystallinity of SnO2 and RuO2 crystals at 1.5% Yb doping, and the LSV and CV curves indicate that the Yb doping of 1.5% increases the oxygen precipitation potential and electrocatalytic oxidation activity of the electrode. When the electrode with Yb doping of 1.5% is the anode with current density of 10 mA/cm2 electrochemical oxidation time of 30 min, the electrode can remove chemical oxygen demand (COD) up to 85.06%, total organic carbon (TOC) up to 60.59% and UV254 from 1.594 to 0.507 for coking wastewater. Gas chromatography (GC–MS), UV–vis and three-dimensional fluorescence results of coking wastewater before and after treatment show that large toxic substances in coking wastewater are degraded to low toxic organic substances, and most soluble organic substances are degraded and transformed. This study provides the possibility of basic research for the engineering practice of electrochemical oxidation for the treatment of coking wastewater.  相似文献   

5.
The nano-crystalline Cu-Ce-Zr-O composite oxides were successfully prepared by the supercritical anti-solvent (SAS) process. The physicochemical properties and catalytic performances were investigated by X-ray diffraction (XRD), Raman spectroscopy, H2 temperature-programmed reduction (H2 -TPR), oxygen storage capacity (OSC) measurement and catalytic activity evaluation. It was found that Cu2+ ions incorporated into CeO2 -ZrO2 lattice to form Cu-Ce-Zr-O solid solution associated with the formation of oxygen vacancies. The Cu-Ce-Zr-O catalysts prepared via the SAS process with the Cu content 2.63 mol.% showed the highest OSC index of 636.9 μmol/g. Compared with the samples prepared by impregnation method, Cu doping using SAS process could improve the dispersion of Cu2+ in the composite oxide, enhance the interaction between Cu2+ and CeO2-ZrO2 , improve the reducibility of catalyst, and thus improve the OSC performance and increase the catalytic activity for CO oxidation at low temperature.  相似文献   

6.
The electrodeposition of erbium on molybdenum electrodes and the formation of Mg-Li-Er alloys were investigated in LiCl-KCl molten salts. At a molybdenum electrode, the electroreduction of Er (III) proceeded in a one-step process involving three electrons. The diffu-sion coefficient of erbium ions in the melts was determined by cyclic voltammetry, chronopotentiometry and chronoamperometry respectively. Cyclic voltammograms (CVs) showed that the underpotential deposition (UPD) of lithium on pre-deposited Mg-Er alloy led to the formation of a Mg-Li-Er alloy. X-ray diffraction (XRD) indicated that Er5Mg24 phase was formed via potentiostatic electrolysis. Scanning electron microscopy (SEM) showed that Er atoms mainly concentrated at the grain boundaries while Mg element evenly located in the alloy.  相似文献   

7.
Well-crystalline CeO2 nanostructures with the morphology of nanorods and nanocubes were synthesized by a template-free hydro-thermal method. X-ray diffraction (XRD), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) nitrogen adsorp-tion-desorption measurements were employed to characterize the synthesized materials. The reducibility and catalytic activity of nanostruc-tured CeO2 were examined by hydrogen temperature-programmed reduction (H2-TPR) and CO oxidation. The results showed that CeO2 nanorods could be converted into CeO2 nanocubes with the increasing of the reaction time and the hydrothermal temperature, CeO2 nanorods became longer gradually with the increasing of the concentrations of NaOH. H2-TPR characterization demonstrated that the intense low-temperature reduction peak in the CeO2 nanorods indicated the amount of hydrogen consumed is larger than CeO2 nanocubes. Meantime the CeO2 nanorods enhanced catalytic activity for CO oxidation, the total conversion temperature was 340 oC. The reasons were that CeO2 nanorods have much smaller crystalline sizes and higher surface areas than CeO2 nanocubes.  相似文献   

8.
Graphite screen printed electrode modified with Gd_2 O_3 nanoparticles(Gd_2 O_3/SPE) was developed for the determination of venlafaxine(VF). The Gd_2 O_3 nanoparticles were thoroughly characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM) and X-ray diffraction(XRD) analyses. To study the electrochemical behaviour of venlafaxine cyclic voltammetry(CV), chronoamperometry(CHA)and differential pulse voltammetry(DPV) were employed. These studies reveal that the oxidation of venlafaxine is facilitated at Gd_2 O_3/SPE. After optimization of analytical conditions, analysis of venlafaxine using the modified electrode in 0.1 mol/L PBS(pH 7.0) demonstrates that the peak currents corresponding to venlafaxine vary linearly with its concentration in the range of 5.0 ×10~(-6)-9.0 × 10~(-4) mol/L. The detection limit(S/N = 3) of 2.1 × 10~(-7) mol/L is obtained for venlafaxine using DPV. The prepared modified electrode benefits from advantages such as simple preparation method, high sensitivity and low detection limit.Moreover, the evaluation of practical applicability of this proposed method is successful in the identification of venlafaxine in pharmaceutical formulations, urine and water samples.  相似文献   

9.
以H2PtCl6为初始原料,采用水解法制备了H2Pt(OH)6,然后用化学沉淀法制备了20%Pt/C催化剂。对其结构和形貌特征采用TEM、XRD、XPS进行分析和表征,并采用循环伏安法和计时电流法评价了催化剂的电化学性能。结果表明,所制备的催化剂铂颗粒分散均匀,大小约2.1nm,表面无Cl-,具有良好的电化学性能。  相似文献   

10.
In this work,tungsten oxide with different concentrations(0,0.4 at%,2.0 at% and 3.2 at%) was introduced to the ceria nanorods via a deposition-precipitation(DP) approach,and copper species of ca.10 at% were sequentially anchored onto the modified ceria support by a similar DP route.The aim of the study was to investigate the effect of the amount of tungsten oxide(0,0.4 at%,2.0 at%,and 3.2 at%) modifier on the copper-ceria catalysts for CO oxidation reaction and shed light on the structure-activity relationship.By the aids of multiple characterization techniques including N_2 adsorption,high-resolution transmission electron microscopy(HRTEM),powder X-ray diffraction(XRD),X-ray absorption fine structure(XAFS),and temperature-programmed reduction by hydrogen(H_2-TPR) in combination with the catalytic performance for CO oxidation reaction,it is found that the copper-ceria samples maintain the crystal structure of the fluorite fcc CeO_2 phase with the same nanorod-like morphology with the introduction of tungsten oxide,while the textural properties(the surface area,pore volume and pore size) of ceria support and copper-ceria catalysts are changed,and the oxidation states of copper and tungsten are kept the same as Cu~(2+)and W~(6+)before and after the reaction,but the introduction of tungsten oxide(WO_3)significantly changes the metal-support interaction(transfer the CuO_x clusters to Cu-[O_x]-Ce species),which delivers to impair the catalytic activity of copper-ceria catalysts for CO oxidation reaction.  相似文献   

11.
ZnO doped Pt/CeO2 nanocomposites were prepared by electrospinning and reduction impregnation. X-ray diffraction (XRD), transmission electron microscopy (TEM), energy disperse spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) were employed to characterize the nanocomposites. It is observed that ZnO and CeO2 form the hexagonal wurtzite phase and cubic fluorite phase in the nanocomposite, respectively, whilst Pt nanoparticles (NPs) with the number-averaged size of ca. 3.1 nm are uniformly distributed on the surface of nanofibers. The mass fraction of Pt NPs in the nanocomposites is about 10 wt%. The doping of ZnO is effective to promote reactive oxygen species, surface reaction sites and the interaction between Pt and oxides. The catalytic performance of nanocomposites was evaluated by the methanol electro-oxidation, indexed with the catalytic activity, stability of catalyst. As a result, it is found that the nanocomposite exhibits much higher activity and stability for methanol oxidation than the undoped Pt/CeO2 catalyst.  相似文献   

12.
The manufacture, physical characterization, environmental applications and cytotoxicity properties of nanocomposites consisting of CuO/CeO2 nano-rare earth composite materials prepared using the coprecipitation method at molar ratio of 6:4 with aqueous solutions of copper nitrate and cerium nitrate were reported. The performance of the selective catalytic oxidation of ammonia to N2 (NH3-SCO) over a CuO/CeO2 nano-rare earth composite materials in a tubular fixed-bed reactor (TFBR) at temperatures from 423 to 673 K in the presence of oxygen was elucidated. The catalytic redox behavior was determined by cyclic voltammetry (CV). The nanocomposite particles were characterized by TEM, with a tiny particle size around 10 nm with high dispersion phenomena. Further, cell cytotoxicity and the percentage cell survival were determined by using 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethoxyphenol)-2-(4-sulfophenyl)-2H-tetra-zolium (MTS) assay on human lung MRC-5 cell line. Experimental results showed that no apparent cytotoxicity was observed when the MRC-5 was exposed to the CuO/CeO2 nanocomposite materials.  相似文献   

13.
This study was focused on the influence of active oxygen on the performance of Pt/CeO_2 catalysts for CO oxidation. A series of CeO_2 supports with different contents of active oxygen were obtained by adding surfactant at different synthesis steps. 0.25 wt% Pt was loaded on these CeO_2 supports by incipientwetness impregnation methods. The catalysts were characterized by N2 adsorption, X-ray diffraction(XRD), high-resolution transmission electron microscopy(HRTEM), H_2 temperature-programmed reduction(H_2-TPR), dynamic oxygen storage capacity(DOSC) and in-situ DRIFTS technologies. For S-f supports, the surfactant was added into the solution before spray-drying in the synthesis process, which facilitates more active oxygen formation on the surface of CeO_2. After loading Pt, the more active oxygen on CeO_2 contributes to dispersing Pt species and enhancing the CO oxidation activity. As for the aged samples,Pt-R-h shows the highest activity above 190 ℃ because of the presence of more partly oxidized Pt~(δ+) species. Thus the activity is also influenced by the states of Pt and the Pt~(δ+) species may contribute to the high activity at elevated temperature.  相似文献   

14.
15.
A simple electrodeposition technique was used to prepare Ni-CeO_2 nanorods composite coating(Ni-CeO_2 NRs) using Watt's nickel plating bath containing CeO_2 nanorods(NRs) as the reinforcement phase under optimized process conditions. The X-ray diffraction analysis(XRD) was used for the structural analysis of Ni-CeO_2 NRs composite coatings and their average crystalline size is ~22 nm for pure Ni and ~18 nm,respectively. The crystalline structure is fcc for the Ni-CeO_2 nanocomposite coatings. The surface morphology of the electrodeposited Ni-CeO_2 NRs composite coatings was analyzed by scanning electron microscopy(SEM). Microhardness of pure Ni and Ni-CeO_2 NRs composite coatings are found to be 253 HV and 824 HV, respectively. The inclusion of CeO_2 NRs increases the microhardness of Ni-CeO_2 NRs composite coatings. The corrosion resistance behavior of Ni-CeO_2 NRs composite coating was evaluated by Tafel polarization and AC impedance methods. It is revealed that CeO_2 NRs reinforced Ni matrix shows higher microhardness and corrosion resistance than existing reported electrodeposited pure Ni and CeO_2 nanoparticles reinforced Ni coatings.  相似文献   

16.
Copper-ceria sheets catalysts with different loadings of copper(2 wt.%, 5 wt.% and 10 wt.%) supported on ceria nanosheets were synthesized via a depositioneprecipitation(DP) method. The prepared catalysts were systematically characterized with various structural and textural detections including X-ray diffraction(XRD), Raman spectra, transmission electron microscopy(TEM), X-ray absorption fine structure(XAFS), and temperature-programmed reduction by hydrogen(H_2-TPR), and tested for the CO oxidation reaction. Notably, the sample containing 5 wt.% of Cu exhibited the best catalytic performance as a result of the highest number of active CuO species on the catalyst surface. Further increase of copper content strongly affects the dispersion of copper and thus leads to the formation of less active bulk CuO phase, which was verified by XRD and H_2-TPR analysis. Moreover, on the basis of in-situ diffuse reflectance infrared Fourier transform spectroscopy(in-situ DRIFTS) results, the surface Cu~+ species, which are derived from the reduction of Cu~(2+), are likely to play a crucial role in the catalyzing CO oxidation.Consequently, the superior catalytic performance of the copper-ceria sheets is mainly attributed to the highly dispersed CuO_x cluster rather than Cu-[O_x]-Ce structure, while the bulk CuO phase is adverse to the catalytic activity of CO oxidation.  相似文献   

17.
We employed modified substrates as outer heterogeneous catalysts to reduce the soot originating from the incomplete diesel combustion. Here, we proposed that ceria(CeO2)-based catalysts could lower the temperature at which soot combustion occurred from 610 oC to values included in the operation range of diesel exhausts(270–400 oC). Here, we used the sol-gel method to synthesize catalysts based on mixed oxides(ZnO:CeO2) deposited on cordierite substrates, and modified by ruthenium nanoparticles. The presence of ZnO in these mixed oxides produced defects associated with oxygen vacancies, improving thermal stability, redox potential, sulfur resistance, and oxygen storage. We evaluated the morphological and structural properties of the material by X-ray diffraction(XRD), Brumauer-emmett-teller method(BET), temperature programmed reduction(H2-TPR), scanning electron microscopy(SEM), and transmission electron microscopy(TEM). We investigated how the addition of Ru(0.5 wt.%) affected the catalytic activity of ZnO:CeO2 in terms of soot combustion. Thermogravimetric analysis(TG/DTA) revealed that presence of the catalyst decreased the soot combustion temperature by 250 oC, indicating that the oxygen species arose at low temperatures, which was the main reason for the high reactivity of the oxidation reactions. Comparative analysis of soot emission by diffuse reflectance spectroscopy(DRS) showed that the catalyst containing Ru on the mixed oxide-impregnated cordierite samples efficiently oxidized soot in a diesel stationary motor: soot emission decreased 80%.  相似文献   

18.
To investigate the effect of CeO2 nanomaterial morphology on its performance for NO catalytic oxidation. Three kinds of CeO2 nanomaterials including CeO2 nanorods, nanospheres and nanoparticles were prepared by hydrothermal method and used for catalytic oxidation of NO at low temperature. The experimental results show that CeO2 nanorods are of the best catalytic performance. Characterization techniques including TEM, XRD, H2-TPR, NO-TPD and XPS were used to determine the relationship between the morphology of CeO2 nanomaterial and its catalytic performance. TEM images show that CeO2 nanorods predominantly exposed (110) and (1 0 0) planes, while CeO2 nanospheres and CeO2 nanoparticles predominantly exposed (1 1 1) plane. The excellent catalytic performance of CeO2 nanorods could be ascribed to the low crystallinity, high reducibility, strong NO adsorption ability and the presence of more surface chemisorbed oxygen.  相似文献   

19.
Monolithic macroporous Pt/CeO2/Al2O3 and zirconia modified Pt/CeO2/Al2O3 catalysts were prepared by using concentrated emulsions synthesis route. The catalytic performances over the platinum-based catalysts were investigated by water-gas shift (WGS) reaction in a wide temperature range (180-300 oC). The samples were characterized with thermogravimetry (TG), X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and temperature programmed reducti...  相似文献   

20.
Mesoporous CeO2-MnOx binary oxides with different Mn/Ce molar ratios were prepared by hydrothermal synthesis and characterized by scanning electron microscopy (SEM), N2 sorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and H2 temperature-programmed reduction (H2-TPR). The characterization results indicated that the CeO2-MnOx catalysts exhibited flower-like microspheres with high specific surface areas, and partial Mn cations could be incorporated into CeO2 lattice to form solid solution. The CeO2-MnOx catalysts showed better catalytic activity for CO oxidation than that prepared by the coprecipitation method. Furthermore, the CeO2-MnOx catalyst with Mn/Ce molar ratio of 1 in the synthesis gel (Ce-Mn-1) exhibited the best catalytic activity, over which the conversion of CO could achieve 90% at 135 ℃. This was ascribed to presence of more Mn species with higher oxida- tion state on the surface and the better reducibility over the Ce-Mn-I catalyst than other CeO2-MnOx catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号