首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of CuO-ZnO-Al2O3-La2O3 /HZSM-5 bifunctional catalysts with various La loadings for dimethyl ether (DME) directly synthesized from CO2 hydrogenation were prepared. The catalysts were characterized with N2 adsorption-desorption, X-ray diffraction (XRD), H2 temperature-programmed reduction (H2-TPR), NH3 temperature-programmed desorption (NH3-TPD) and N2O titration techniques, and tested for the synthesis of DME directly from CO2 hydrogenation in a fixed-bed reactor. The results showed that the reducibility, dispersion of bifunctional catalysts were strongly dependent on the addition of La. With the addition of appropriate amount of La, the crystallite size of CuO was decreased and the dispersion of Cu on the surface was enhanced, which resulted in the increased conversion of CO2 . It was also found that the selectivity to DME was related to the intensity and amount of strong acid site on the catalyst surface. The presence of La favored the production of DME, and the optimum catalytic activity was obtained when the amount of La was 2.0 wt.%.  相似文献   

2.
Overthe last fewyears ,partial oxidation of meth-ane (POM)tosyngas has attractedincreasing attentioninthe field of catalysis[1 ,2].Compared withtraditionalgranular catalysts , monolithic catalysts are more suit-able for practical application of heterogeneously cata-lyzed gas/liquid reactions ,with many advantages suchas lowpressure drops ,excellent heat and gas conduc-tivity ,and larger external surface areas .The active components in the catalysts of POMmainlyinclude noble metals andtransit…  相似文献   

3.
The CeO_2-TiO_2(CeTi)and CeO_2/WO_3-TiO_2(CeWTi)catalysts were prepared by sol-gel method.The asprepared catalysts were hydrothermally treated at 760 ℃ for 48 h in air containing 10 vol% H_2O to obtain the hydrothermal aged catalysts.The sulfur aged catalysts were treated at 400 ℃ with 100 ppm SO_2,10%water vapor,air balance for 48 h and catalysts.The powder X-ray diffraction(XRD)and Raman results indicate that the crystallization of hydrothermal aged catalysts is more serious than sulfur aged catalysts.In addition,tungsten species can stabilize the CeTi catalyst from grain growth.According to the results of in situ diffuse reflectance infrared Fourier transform spectra(DRIFTS),temperatureprogrammed desorption of ammonia(NH_3-TPD),H_2 temperature-programmed reduction(H_2-TPR)and ammonia oxidation,the aging process leads to loss of surface area,redox properties,surface acidities and surface ceria concentration,especially for the hyd rothermal aging.The NH_3-NO/NO_2 SCR perfo rmances of sulfur aged catalysts are better than that of hydrothermal aged catalysts.Compared with CeTi catalyst,the addition of tungsten inhibits the crystallization of catalyst.So that more acid sites and active sites are retained.This is also the reason why tungsten addition improves the NH_3-NO/NO_2 SCR performance of CeTi catalyst.  相似文献   

4.
RE-NiO(RE=La,Nd,Sm,Gd) catalysts were prepared by a modified sol-gel method and characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM),BET surface area analysis,H 2 temperature-programmed reduction(H 2-TPR),and O 2 temperature-programmed desorption(O 2-TPD).The oxidative dehydrogenation of ethane(ODHE) to ethylene was applied to evaluate catalytic performance of the samples.The results showed that the doping of RE affected the physicochemical properties of the catalysts.The strong interaction between Gd and NiO played an important role in the lessened reducibility and the distribution of adsorbed oxygen species,consequently influenced the catalytic performance.The best yield to ethylene of 29% was obtained over the Gd-NiO catalyst with an ethane conversion of 56%.  相似文献   

5.
The disordered macroporous-mesoporous La_(1-x)Ce_xCoO_3 catalysts were prepared by complexcombustion method with ethylene glycol as complexing agent at relatively low calcination temperature.The samples were characterized by means of X-ray diffraction,N2 adsorption-ndash;desorption,Xray photoelectron spectroscopy,transmission electron microscopy,hydrogen temperature-programmed reduction and soot temperature-programmed reduction,and so on.The results show that the use of complexing agent and relatively low calcination temperature increase the specific surface area of the catalyst and have abundant pore structure.The Ce ions introduced into lattice of LaCoO_3 mainly exist in the form of tetravalent.At the same time,Ce ions enhance the redox performance of the catalyst and the mobility of active oxygen species,which enhances the catalytic activity of the catalyst for soot combustion.The results of activity test show that La_(0.9)Ce_(0.1)CoO_3 catalyst exhibits the highest activity in the absence of NO and NO_2,and its T_(10),T_(50) and T_(90) are 371,444,and 497℃,respectively.At the same time,a possible reaction mechanism is proposed in this study based on the turnover frequency(TOF) calculated by isothermal anaerobic titrations,XPS and XRD results.  相似文献   

6.
A series of transition metals (Fe, Co, Ni, Cu, Cr and Mn)-doped CeO2–TiO2 catalysts were prepared by the sol–gel method and applied for the catalytic removal of 1,2-dichloroethane (DCE) as a model for chlorinated VOCs (CVOCs). The various characterization methods including X-ray diffraction (XRD), N2 adsorption–desorption, UV-Raman, NH3 temperature-programmed desorption (NH3-TPD) and H2 temperature-programmed reduction (H2-TPR) were utilized to investigate the physicochemical properties of the catalysts. The results show that doping Fe, Co, Ni or Mn can obviously promote the activity of CeO2–TiO2 mixed oxides for DCE degradation, which is related to their improved texture properties, acid sites (especially for strong acidity) and low-temperature reducibility. Particularly, CeTi–Fe doped with moderate Fe exhibits excellent activity for 1,2-dichloroethane (DCE) degradation, giving a T90% value as low as 250 °C. More importantly, only trace chlorinated byproducts were produced during the low-temperature degradation of various CVOCs (dichloromethane (DCM), trichloroethylene (TCE) and chlorobenzene (CB)) over CeTi–Fe1/9 catalyst with high durability.  相似文献   

7.
A series of BaCe03modified with different rare earth elements(La,Y,Pr)were synthesized by coprecipitation and calcination and the effect of rare earth elements for catalytic ammonia synthesis under mild conditions was studied.The ammonia synthesis performance tests show that 2.5%Ru/BaCe0.9La0.1O3-δcatalyst(All the percentages of Ru in this article are in mass fraction)exhibits the highest ammonia synthesis rate(34 mmol/(g·h))at 3 MPa,450℃,and no sign of deactivation after 100 h of reaction.H2-TPR and XPS analyses indicate that the introduction of La increases the amount of oxygen vacancies of the catalyst,which is beneficial to increasing the electron density of Ru surface.HRTEM analysis shows that the Ru particle size is reduced greatly after La is introduced,which facilitates the catalyst generating more Bs-type sites(active sites of Ru species for N=N dissociation).CO2-TPD analysis indicates that BaCe0.9La0.1O3-δhas stronger basicity,which promotes electrons transfer from support to Ru.This work provides an effective method for design and synthesis of Ru-based multi-element composite perovskite oxide catalysts.  相似文献   

8.
Magnesium and rare earth mixed oxides (Mg3REOx (RE = La, Y, Ce)) were prepared and characterized by X-ray diffraction (XRD), N2 adsorption–desorption, infrared spectra and microcalorimetry of CO2. The results reveal that the Mg3CeOx catalyst is present in the form of Mg-Ce-O solid solution, while the Mg3LaOx and Mg3YOx catalysts are probably rare earth oxides dispersed on MgO surface. As a result, among the calcined Mg3REOx catalysts, the Mg3CeOx catalyst presents the highest rate constant for acetone aldolization, which is well correlated to its more homogeneous distribution of basic sites. In contrary, the Mg3YOx catalyst exhibit the lowest catalytic activity for acetone aldolization. Upon hydration pre-treatment, the basic properties on the surface of the Mg3REOx catalysts were changed markedly. The Mg3YOx catalyst after hydration treatment shows the highest amount of basic sites on catalyst surface, and then exhibits the highest activity among the hydrated Mg3REOx catalysts. These results make it possible to fine-tune basic sites for acetone aldolization.  相似文献   

9.
A series of La1‒xSrxMnO3 samples were prepared by sol–gel method and used to degrade rhodamine B (RhB) in water. All samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption–desorption, temperature-programmed reduction of H2 (H2-TPR) and temperature-programmed desorption of O2 (O2-TPD). The results show that the degradation of RhB is highly dependent on the initial pH value of solution. Sr doping enhances the degradation ability of LaMnO3 for RhB in the time range of 0–40 min under a strong acidic environment, but all samples exhibit similar degradation rate from 40 to 60 min. In La0.7Sr0.3MnO3–RhB reaction system, there are two different degradation pathways, including N-de-ethylation, chromophore cleavage, ring-opening and mineralization. La1‒xSrxMnO3 (x ≤ 0.3) has the perovskite structure of La–Mn oxides, while La0.6Sr0.4MnO3 exhibits a Sr0.4MnLa0.6O2.98 perovskite phase. Sr doping leads to distortion of rhombohedral crystal structure and increases the relative content of Mn4+. The perovskite structure is stable in strong acidic environment during RhB degradation, but the relative content of Mn4+ and Mn3+ on the material surface changes. Sr doped LaMnO3 achieves specific surface area of 58.8 m2/g and total pore volume of 0.152 cm3/g. Furthermore, Sr2+ doping improves redox properties of La–Mn oxides, and the presence of defects makes oxygen diffusion easier compared with the undoped samples.  相似文献   

10.
CuMn mixed oxides catalysts doped with La were prepared following a co-precipitation method and used for the catalytic oxidation of toluene. Catalysts properties of the catalysts were investigated by X-ray diffraction, N_2 adsorption/desorption,scanning electron microscopy, H_2-temperature-programmed reduction(H_2-TPR), O_2-temperature-programmed desorption(O_2-TPD) and X-ray photoelectron spectroscopy techniques. Characterization data reveal that the phase change and decrease in crystallinity of the La-doped catalysts increase the number of oxygen vacancies. Improvements in reducibility and an increase in the amount of chemisorbed oxygen of the La-doped catalysts were also verified by H_2-TPR and O_2-TPD. The activity of the CuMn mixed oxides catalysts is significantly improved by the addition of a nominal amount of La. The CuMn/La-4 mol% catalyst exhibits the best catalytic activity, with a 90%conversion temperature of 255 ℃,attributed to a high Mn~(3+)ratio, superficial chemisorbed oxygen,and high surface area. This study indicates La to be a promising dopant for Cu-Mn catalysts toward toluene oxidation.  相似文献   

11.
A series of Ce0.5Fe0.30Zr0.20O2 catalysts were prepared by different methods(co-precipitations method, citric acid sol-gel method, impregnation method, physical mixed method, and hydrothermal method) and characterized by X-ray diffraction(XRD), Raman spectroscopy, Brunauer-Emmett-Teller(BET) and H2-TPR measurements. Potential of the catalysts in the soot oxidation was evaluated in a temperature-programmed oxidation(TPO) apparatus. The results showed that all the Fe3+ and Zr4+ were incorporated into ceria lattice to form a pure Ce-Fe-Zr-O solid solution for the co-precipitation sample, but two kinds of Fe phases existed in the Ce-Fe-Zr-O catalysts prepared by other methods: Fe3+ incorporated into CeO2 lattice and dispersed Fe2O3 clusters. The free Fe2O3 clusters could improve the activity of catalysts for soot oxidation comparing with the pure Ce-Fe-Zr-O solid solution owing to the synergetic effect between free Fe2O3 and surface oxygen vacancies. In addition, the activity of catalysts strongly relied on the surface reducibility of free Fe2O3 particles. Holding both abundant free Fe2O3 particles and high oxygen vacancy concentration, the hydrothermal Ce0.5Fe0.3Zr0.2O2 catalyst presented the lowest Ti(251 °C, ignition temperature of soot oxidation) and Tm(310 °C, maximum oxidation rate temperature) for soot combustion(with tight-contact between soot and catalysts) among the five samples. Even after aging at 800 °C for 10 h, the Ti and Tm were still relatively low, at 273 and 361 °C, respectively, indicating high catalytic stability.  相似文献   

12.
High surface area CeO2 was prepared by the surfactant-assisted route and was employed as catalyst support. The 0-3 at.% Cu doped Cu-Ni/CeO2 catalysts with 10 wt.% and 15 wt.% of total metal loading were prepared by an impregnation-coprecipitation method. The influence of Cu atomic content on the catalytic performance was investigated on the steam reforming of ethanol (SRE) for H2 production and the catalysts were characterized by N2 adsorption, inductively coupled plasma (ICP), X-ray diffraction (XRD), transmission electron microscopy (TEM), temperature-programmed rerduction (TPR) and H2-pulse chemisorption techniques. The activity and products distribution behaviors of the catalysts were significantly affected by the doped Cu molar content based on the promotion effect on the dispersion of NiO particles and the interactions between Cu-Ni metal and CeO2 support. Significant increase in the ethanol conversion and hydrogen selectivity were obtained when moderate Cu metal was doped into the Ni/CeO2 catalyst. Over both of the 10Ni98.5Cu1.5/CeO2 and 15Ni98.5Cu1.5/CeO2 catalysts, more than 80% of ethanol conversion and 60% of H2 selectivity were obtained in the ethanol steam-reforming when the reaction temperature was above 450 ℃.  相似文献   

13.
This study was focused on the influence of active oxygen on the performance of Pt/CeO_2 catalysts for CO oxidation. A series of CeO_2 supports with different contents of active oxygen were obtained by adding surfactant at different synthesis steps. 0.25 wt% Pt was loaded on these CeO_2 supports by incipientwetness impregnation methods. The catalysts were characterized by N2 adsorption, X-ray diffraction(XRD), high-resolution transmission electron microscopy(HRTEM), H_2 temperature-programmed reduction(H_2-TPR), dynamic oxygen storage capacity(DOSC) and in-situ DRIFTS technologies. For S-f supports, the surfactant was added into the solution before spray-drying in the synthesis process, which facilitates more active oxygen formation on the surface of CeO_2. After loading Pt, the more active oxygen on CeO_2 contributes to dispersing Pt species and enhancing the CO oxidation activity. As for the aged samples,Pt-R-h shows the highest activity above 190 ℃ because of the presence of more partly oxidized Pt~(δ+) species. Thus the activity is also influenced by the states of Pt and the Pt~(δ+) species may contribute to the high activity at elevated temperature.  相似文献   

14.
A series of monolithic Ni/γ-Al2O3 catalysts with and without basic promoters (Na, Sr, La, Ce) were prepared. Partial oxidation of methane (POM) to syngas was carried out in a continuous-flow, fixed-bed reactor. The influences of reaction conditions, including temperature, CH4/O2 ratio and space velocity, on the performance of the catalyst were investigated. The results show that at a high space velocity of 1×105 h-1, optimal CH4 conversion can be obtained. Effects of promoters such as Na, Sr, Ce, La were also investigated, and the catalyst samples were characterized by means of temperature-programmed reduction and XRD techniques. XRD suggests that the addition of promoters has no influence on the crystal structure of Ni/γ-Al2O3 catalyst. The results show that the addition of a small amount of promoters improves the reducibility and activity of the catalyst. The side reaction CH4 2 O2→CO2 H2O, is fully restrained and 100% H2 selectivity is achieved when Ce and La are used as promoters, respectively.  相似文献   

15.
CeO_2-ZrO_2 mixed oxides are widely used in the three-way catalysts due to their unique reversible oxygen storage and release capacity. Large surface area, high oxygen storage capacity and good thermal stability of cerium zirconium mixed oxides are the key properties for the automotive catalysts so as to meet the strict emission regulations. In this work, alumina modified CeZrLaNd mixed oxides were prepared by a co-precipitation method. The effects of moisture in precursor and inert N2 atmosphere during calcinations on the structure and properties were investigated by Brunauer-Emmett-Teller(BET) surface area measurements, X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), hydrogen temperature-programmed reduction(H_2-TPR), oxygen storage capacity(OSC), Raman spectroscopy, and X-ray photoelectron spectroscopy(XPS). The results show that the moisture in precursor during calcinations increases the crystal grain size of the cerium zirconium mixed oxides, improving the thermal stability. And the aged surface area of sample after being calcined at1000 ℃ for 4 h reaches 68.8 m~2/g(5.7% increase compared with the common sample). The inert N2 atmosphere endows a great pore-enlarging effect, which leads to high fresh surface area of 148.9 m2/g(13.5% increase compared with the common sample) and big pore volume of 0.5705 mL/g. The redox and oxygen storage capacity are also improved by inert N2 atmosphere with high OSC value of 241.06μmolO_2/g(41.3% increase compared with the common calcination), due to the abundant formation of the crystal defects and oxygen vacancies.  相似文献   

16.
A series of catalysts were prepared by doping different loadings of CeO2 over TiO2-SiO2-WO3 and used for the selective catalytic reduction of NOx by NH3. The experimental results showed that the selective catalytic reduction(SCR) performance and SO2-resistant ability of TiO2-SiO2-WO3 were greatly enhanced by the introduction of cerium. The catalyst containing 10% CeO2 showed the highest NO conversion in a wide temperature range and good N2 selectivity with broad operation temperature window at the gas hourly space velocity(GHSV) of 30000 h–1, which was a very promising catalyst for NOx abatement from diesel engine exhaust. The catalysts were characterized by X-ray diffraction(XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy(SEM-EDS), N2 adsorption-desorption(BET) and X-ray photoelectron spectroscopy(XPS). The characterization results showed that the bigger pore radius, higher surface atomic concentration and dispersion of Ce and the abundant adsorbed oxygen on the surface of catalyst contributed to the best NH3-SCR performance of CeO2/TiO2-SiO2-WO3 catalyst containing 10% CeO2.  相似文献   

17.
The CuO/CeO2 catalysts were investigated by means of X-ray diffraction(XRD),laser Raman spectroscopy(LRS),X-ray photoelectronic spectroscopy(XPS),temperature-programmed reduction(TPR),in situ Fourier transform infrared spectroscopy(FTIR) and NO+CO reaction.The results revealed that the low temperature(150 °C) catalytic performances were enhanced for CO pretreated samples.During CO pretreatment,the surface Cu+/Cu0 and oxygen vacancies on ceria surface were present.The low valence copper species activated the adsorbed CO and surface oxygen vacancies facilitated the NO dissociation.These effects in turn led to higher activities of CuO/CeO2 for NO reduction.The current study provided helpful understandings of active sites and reaction mechanism in NO+CO reaction.  相似文献   

18.
Hierarchical ZSM-5(HZ) molecular sieves based on fly ash were synthesized using a method combining water heat treatment with step-by-step calcination.The coupling catalysts between La_(1-x)Ce_xMn_(0.8)-Ni_(0.2)O_3(x ≤ 0.5) perovskites and HZ were prepared through the impregnation method,which were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),high-resolution transmission electron microscopy(HRTEM),N_2 adsorption,X-ray photoelectron spectroscopy(XPS),NH_3-temperature programmed desoprtion(NH_3-TPD),H_2-temperature programmed reduction(H_2-TPR) and O_2-TPD techniques and investigated regarding pentanal oxidation at 120-390℃ to explore the effects of Ce doping on the catalytic activity and the active oxygen species of the coupling catalysts,meanwhile,the reaction mechanism and pathway of pentanal oxidation were also studied.The results reveal that Ce substitution at La sites can change the electronic interactions between all the elements and promote the electronic transfer among La,Ce,Ni,Mn and HZ,influencing directly the physicochemical characteristics of the catalysts.Moreover,the amount and transfer ability of surface adsorbed oxygen(O_2~-and O~-)regarded as the reactive oxygen species and the low temperature reducibility are the main influence factors in pentanal oxidation.Additionally,La_(0.8)Ce_(0.2)Mn_(0.8)Ni_(0.2)O_3/HZ exhibits the best catalytic activity and deep oxidation capacity as well as a better water resistance due to its larger amount of surface adsorbed oxygen species and higher low temperature reducibility.What's more,appropriate Ce substitution can significantly enhance the amount of O_2~-ions,which can distinctly enhance the catalytic activity of the catalyst,and moderate acid strength and appropriate acid amount can also facilitate the improvement of the pentanal oxidation activity.It is found that there is a synergic catalytic effect between surface acidity and redox ability of the catalyst.According to the in situ DRIFTS and GC/MS analyses,pentanal can be oxidized gradually to CO_2 and H_2 O by the surface oxygen species with the form of adsorption in air following the Langmuir-Hinshelwood(L-H) reaction mechanism.Two reaction pathways for the pentanal oxidation process are proposed,and the conversion of the formates to carbonates may be one of the main rate-determining steps.  相似文献   

19.
The presence of oxygen vacancies and hydroxyl groups are both favorable for the methanol electrooxidation on Pt-based catalysts.Understanding and differentiating the enhancing mechanism between oxygen vacancies and hydroxyl groups for high activity of Pt catalysts in methanol oxidation reaction(MOR)is essential but still challenging.Herein,we developed two kinds of co-catalyst for Pt/CNTs,Pr6O11is rich in oxygen vacancies but contains substantially no hydroxyl groups,while Pr(OH)3 possesses abundant hydroxyl groups without oxygen vacancies.After a seque nce of designed experiments,it can be found that both oxygen vacancies and hydroxyl groups can improve the performance of Pt/CNTs electrocatalysts,but the enhancing mechanism and improving degree of oxygen vacancies and hydroxyl groups for the MOR are different.Since the oxygen vacancies are more conducive to increasing the intrinsic activity of the Pt catalyst,and the hydroxyl groups play a decisive role in dehydrogenation and deproto nation of methanol,the co-catalysts with both oxygen vacancies and hydroxyl groups mixed with Pt/CNTs have higher catalytic performance.Therefore,hydroxyl-rich Pr6O11·xH2O was prepared and used as MOR electrocatalyst after mixed with Pt/CNTs.Benefiting from the synergistic effect of oxygen vacancies and hydroxyl groups,the Pr6O11·xH2O/Pt/CNTs shows a high peak current density of 741 mA/mg,which is three times higher than that of Pt/CNTs.These new discoveries serve as a promising strategy for the rational design of MOR catalysts with low cost and high activity.  相似文献   

20.
A series of MnCeOx catalysts supported on cordierite honeycomb (Cord) were prepared by a combustion synthesis method using Mn(NO3)2 , Ce(NO3 )2·6H2O and citric acid. The effect of the molar ratio of Mn/Ce, calcination time, the amount of citric acid and the effect of water vapor on the catalytic properties for the complete oxidation of benzene were investigated. These catalysts were characterized by X-ray diffraction (XRD), H 2 temperature-programmed reduction (H2 -TPR), O2 temperature programmed desorption (O2 -TPD) and scanning electron microscopy (SEM) techniques. The results indicated that the MnCeOx /Cord catalyst with Mn/Ce molar ratio of 1:1, calcining for 7h and M n+ /(citric acid) molar ratio of 6 exhibited the highest catalytic activity. When the concentration of benzene was 1500 ppm and the gaseous hourly space velocity was 20000h -1 , the conversion of toluene was 99.1% at the reaction temperature of 300 oC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号