首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Effects of the mischmetal addition in range of 0.4 wt.% to 1.7 wt.% on the microstructure and mechanical properties of die-cast magnesium AZ91D were investigated to improve the elevated temperature mechanical properties of the alloy by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and tensile tests. The results revealed that mechanical properties of die-cast magnesium alloy AZ91D-0.4%MM at 100 oC were near to those of die-cast magnesium alloy AZ91D. The ultimate tensile strength, 0.2% proof yield strength and elongation to failure of die-cast magnesium alloy AZ91D at 170 oC were 178, 129 MPa and 20%, respectively. In comparison, the ultimate tensile strength, 0.2% proof yield strength and elongation to failure of die-cast magnesium alloy AZ91D-0.4%MM at 170 oC reached to 206, 142 MPa and 26%, respectively increased by 15.7%, 10% and 30%. Proper addition of mischmetal could enhance the mechanical properties at an elevated temperature, which was attributed to the formation of Al-RE phases with high thermal stability. Hence sliding of grain boundaries and cracks could be effectively hindered by Al-RE phases.  相似文献   

2.
In the present work, A356 alloy and in situ A356-5TiB2 composite feedstock was produced by employing Cooling slope casting technique. The technique resulted in near spherical morphology of primary α-Al phase in the feedstock of both the alloy and composite. A fine distribution of eutectic Si phase within the matrix was observed in the composite feedstock. The rheocast billets of both the alloy and composite were then thixoformed successfully at 50 % solid fraction temperatures of 580 and 585 °C respectively. Further, tensile properties of thixoformed alloy and composite were measured and compared with those of gravity-cast samples. It was observed that the % increase in yield strength and tensile strength of thixoformed alloy increased by 43 and 36 % respectively with respect to the gravity-cast alloy. The thixoformed composite attained the highest ultimate tensile strength of 211 MPa which is about 40 % higher as compared to gravity-cast alloy. Interestingly, the ductility of the composites is comparable to that of alloy after thixoforming.  相似文献   

3.
In the present study, the mechanical and corrosion properties of thixoformed 357 alloys were examined with different reheating temperatures, and the results were compared with those of permanent mold cast (PMC) 357 alloys. It was found that the thixoforming process significantly improved the mechanical properties (i.e., tensile elongation, impact energy, and resistance to fatigue crack propagation) and the corrosion resistance of 357 alloys. A 380 pct increase in tensile elongation and a 120 pct increase in impact energy were, for example, observed with the thixoforming process of 357 alloy in the T1-tempered condition, as compared to the PMC counterparts. The impact energy was extremely sensitive to reheating temperature due to the coarsening of eutectic Si particles. The resistance to fatigue crack propagation was also much higher for the thixoforming process than the PMC process in the T1-tempered condition. The resistance to both general corrosion and stress corrosion cracking was also greatly improved with thixoforming process. The present observations strongly suggest that the enhancement with thixoforming 357 alloy is largely associated with the size and shape of eutectic Si particles.  相似文献   

4.
Effects of Sb addition on the microstructure, mechanical properties, and fracture behaviors of AZ91 magnesium alloy, as well as the sensitivity to section thickness of the structure and mechanical properties, have been studied. The results show that when Sb is added into the AZ91 alloy, the grain is refined, the Mg17Al12 phase is refined and granulated, and a new Mg3Sb2 phase is formed and becomes coarse needle-shaped as Sb content increases. The room-temperature tensile strength, elongation, and impact toughness increase first, and then decrease with increasing Sb content. The study on sensitivity to section thickness shows that, when composition is constant, the room-temperature tensile strength and elongation increase with the reduction of section thickness; when section thickness is constant, the room-temperature tensile strength and elongation increase first, and then decrease with increasing Sb content. Additionally, the Sb addition improves the tensile strength of the AZ91 alloy at 100 °C and 150 °C. The room-temperature tensile and impact fractographs of the AZ91 alloy show intergranular fracture. With increasing Sb content, the tearing deformation zones on the both fractographs enlarge at first, and then diminish, which is consistent with the change of tensile strength, elongation, and impact toughness increasing first, and then reducing with increasing Sb content.  相似文献   

5.
Effects of Sb addition on the microstructure, mechanical properties, and fracture behaviors of AZ91 magnesium alloy, as well as the sensitivity to section thickness of the structure and mechanical properties, have been studied. The results show that when Sb is added into the AZ91 alloy, the grain is refined, the Mg17Al12 phase is refined and granulated, and a new Mg3Sb2 phase is formed and becomes coarse needle-shaped as Sb content increases. The room-temperature tensile strength, elongation, and impact toughness increase first, and then decrease with increasing Sb content. The study on sensitivity to section thickness shows that, when composition is constant, the room-temperature tensile strength and elongation increase with the reduction of section thickness; when section thickness is constant, the room-temperature tensile strength and elongation increase first, and then decrease with increasing Sb content. Additionally, the Sb addition improves the tensile strength of the AZ91 alloy at 100°C and 150°C. The room-temperature tensile and impact fractographs of the AZ91 alloy show intergranular fracture. With increasing Sb content, the tearing deformation zones on the both fractographs enlarge at first, and then diminish, which is consistent with the change of tensile strength, elongation, and impact toughness increasing first, and then reducing with increasing Sb content.  相似文献   

6.
Friction stir processing (FSP) is emerging as an effective tool for microstructural modification and property enhancement. As-cast AZ91 magnesium alloy was friction stir processed with one-pass and two-pass to examine the influence of processing conditions on microstructural evolution and corresponding mechanical properties. Grain refinement accompanied with development of strong basal texture was observed for both processing conditions. Ultrafine-grained (UFG) AZ91 was achieved under two-pass FSP with fine precipitates distributed on the grain boundary. The processed UFG AZ91 exhibited a high tensile strength of ~435 MPa (117 pct improvement) and tensile fracture elongation of ~23 pct. The promising combination of strength and ductility is attributed to the elimination of casting porosity, and high density of fine precipitates in an UFG structure with quite low dislocation density. The effects of grain size, precipitate, and texture on deformation behavior have been discussed.  相似文献   

7.
对含Y元素AZ31镁合金板材进行退火处理后的组织和性能进行了研究.结果表明:随着退火温度的升高,镁合金晶粒尺寸逐渐增大,力学性能略有提高然后降低;退火时间对镁合金晶粒尺寸影响不大;在300℃下退火1 h后板材性能达到最佳,抗拉强度为255 MPa,屈服强度为170 MPa,延伸率为24%;经过热处理后镁合金断裂方式为准解理断裂和韧性断裂的复合形式.   相似文献   

8.
利用有限元法研究了热辊热带(HSR-HR)、热辊冷带(NSR-HR)和冷辊热带(HSR-NR)3种不同加热方式下AZ91镁合金轧制过程热-力行为,并进行了大压下率热辊冷带工艺试验和组织性能分析.结果表明,HSR-HR、NSR-HR及HSR-NR 3种加热轧制方式的应力三轴度依次增大,中性点附近应力状态软性系数依次减小....  相似文献   

9.
异步轧制AZ31镁合金板材的晶粒细化及性能   总被引:9,自引:4,他引:5  
采用上下轧辊速比1.125的异径异步轧制方法对AZ31镁合金板材进行轧制。采用光学显微镜、X射线衍射仪和电子拉伸机等设备分析轧制前后AZ31镁合金板材的微观组织和力学性能。结果表明:AZ31镁合金热挤压板坯在加热到350℃后,经一道次38%压下率的异步轧制,可获得平均晶粒尺寸为2.8μm的等轴晶粒,板材轧制方向的伸长率和抗拉强度显著增加;轧制过程中形成了非基面晶粒取向;伸长率的增大与晶粒细化和非基面织构的形成有关,抗拉强度的增大归因于晶粒的显著细化效应。  相似文献   

10.
Nd in the form of powder or intermediate alloy was added to AZ31 wrought alloy. The as-obtained alloy was characterized and tested with respect to its microstructure and mechanical properties. The relationship between the microstructure, mechanical properties and tensile fracture mechanism were discussed, with relevant alloys as reference for comparison. Experimental results show that the same quantity of Nd was added into AZ31 in powder form or in intermediate alloy, the absorption rate of Nd reached only 10.8% for the former case and as high as 95% for the later case. Pure Nd powder was added, no new compound was detected, but it served as reductant and purified alloy melt, resulting in improving the tensile strength while Nd was added into AZ31 as Mg-Nd intermediate alloy. The compound Al2Nd and Mg12 Nd were formed in magnesium alloy, which were distributed in the matrix in the shapes of strip and particle, evidently refined the as-cast structure. The as-cast tensile strength (228MPa) of adding pure Nd powder approximated to the figure (245MPa) of adding Mg-Nd intermediate alloy. The tensile fracture mchanism of as-cast AZ31 transformed from cleavage fracture into quasi-cleavage fracture.  相似文献   

11.
P. B. Li 《粉末冶金学》2013,56(4):288-300
Powder thixoforming, a novel method for preparing and forming particle-reinforced metal-matrix composites has been proposed, and the effect of reheating temperature on the microstructure and tensile properties of a thixoforged SiCp/2024 Al-based composite was investigated. The results indicated that the temperature influences the liquid amount and microstructure compactness and the subsequent solidification behaviour during thixoforging. The best comprehensive tensile properties, ultimate tensile strength of 361?MPa, yield strength of 271?MPa and elongation of 4.2%, were obtained under reheating for 70?min at 898?K, which were 24 and 29% higher and 57% lower than those of 2024 Al matrix alloy thixoforged under the same conditions, respectively. The fracture mode of the composite varies from a mixture of intergranular and transgranular mechanisms to transgranular mechanism and intergranular mechanism as the temperature increases.  相似文献   

12.
This study is aimed at understanding the function of two nitride nanoparticles regarding altering the mechanical properties of hybrid magnesium alloys in relation to nanoparticle-matrix reactivity. Nitride nanoparticles were selected for reinforcement purposes due to the affinity between magnesium and nitrogen (in parallel with the well-known magnesium-oxygen affinity). AZ91/ZK60A and AZ31/AZ91 hybrid magnesium alloys were reinforced with AlN and Si3N4 nanoparticles (respectively) using solidification processing followed by hot extrusion. Each nitride nanocomposite exhibited higher tensile strength than the corresponding monolithic hybrid alloy. However, AZ91/ZK60A/AlN exhibited slightly lower tensile ductility than AZ91/ZK60A, while AZ31/AZ91/Si3N4 exhibited higher tensile ductility than AZ31/AZ91. The formation of high strain zones (HSZs) (from particle surfaces inclusive) during tensile deformation as a significant mechanism supporting ductility enhancement was addressed. AZ91/ZK60A/AlN exhibited lower and higher compressive strength and ductility (respectively) compared to AZ91/ZK60A, while AZ31/AZ91/Si3N4 exhibited higher and unchanged compressive strength and ductility (respectively) compared to AZ31/AZ91. Nanograin formation (recrystallization) during room temperature compressive deformation (as a toughening mechanism) in relation to nanoparticle-stimulated nucleation (NSN) ability was also discussed. The beneficial (as well as comparative) effects of the respective nitride nanoparticle on each hybrid alloy are studied in this article.  相似文献   

13.
The objective of this research was to examine melt filtration of AZ91E magnesium alloy permanent mould castings using experimental trials and predict filtration using a commercial software package. Tensile specimens were prepared using a H13 tool steel permanent mould machined to ASTM-B108 standards. The mould and pouring temperatures were 500 and 720?°C, respectively. Without a filter, the average yield strength, tensile strength and elongation were 89.6, 153.9?MPa and 2.41?% respectively and these increased to 96.5, 167.0?MPa and 3.05?% respectively with the use of a steel mesh filter within the well of the mould. Filters enabled removal of MgO based oxides. Modelling using commercial software demonstrated that the use of filters reduced turbulence in the metal stream minimizing oxides, which are essentially sites for stress concentration. The results of the research are important for the development of processing methods to improve the melt cleanliness of magnesium alloys for automotive and aerospace industries.  相似文献   

14.
采用雾化法制得ZK60合金粉末,并用掺胶法制备ZK60合金棒材,研究热挤压后ZK60合金的微观组织、相组成及力学性能.结果表明:合金粉末主要由α-Mg固溶体构成,呈枝晶与等轴晶混合组织,晶粒尺寸5~10μm;在后续热挤压过程中粉末之间结合良好,晶粒进一步细化,同时合金基体中大量析出MgZn_2球形纳米颗粒;经T5(175℃保温12h)热处理后,析出相密度呈增加趋势.挤压变形后材料的屈服强度(σ_(0.2))、最大抗拉强度(σ_(UTS))和伸长率(δ)分别为286.3MPa、337.7MPa及5.6%;随后T5处理可进一步提高强度((σ_(0.2))=300.1MPa,σ_(UTS)=340.5 MPa),增加塑性(δ=12.3%).  相似文献   

15.
铈对铸造镁合金AZ91D显微组织与力学性能的影响   总被引:12,自引:0,他引:12  
利用光学金相显微镜OM和XRD分析了分别加入0.1%,0.3%,0.5%,0.7%和1.0%Ce的AZ91D合金显微组织和相组成,测试了室温力学性能和硬度。结果表明,加入一定量Ce后的AZ91D合金形成杆状化合物Al4Ce,被推移到生长界面,阻碍枝晶的自由生长,从而细化合金显微组织;Ce能提高AZ91D合金室温抗拉强度和硬度,而对其屈服强度和延伸率影响不大;加入0.7%Ce的AZ91D合金晶粒细化效果好,其综合力学性能比较理想。  相似文献   

16.
Pb对AZ91镁合金铸态显微组织及力学性能的影响   总被引:2,自引:0,他引:2  
采用扫描电镜观察、电子探针分析及拉伸性能测试等方法研究了Pb的添加对AZ91合金显微组织和力学性能的影响。结果表明,Pb能够细化AZ91镁合金中的d—Mg和β-Mgl7Al12的晶粒,抑制二次B的析出,且Pb可改善β-Mgl7Al12相形态和分布。Pb通过细晶强化增加了合金强度和硬度,使合金的断裂机制从脆性解理断裂转变为准解理断裂。  相似文献   

17.
超声处理对AZ80镁合金组织与性能的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
通过OM、SEM及阿基米德法等手段,研究超声处理对AZ80镁合金凝固组织、密度和力学性能的影响。结果表明:610℃超声处理可以降低晶粒尺寸,减少枝晶数量。经过超声处理后,合金密度由1.770g/cm3升至1.805g/cm3,抗拉强度由138MPa升高到170.5MPa,延伸率由2.5%提高为4.0%。  相似文献   

18.
周坐东 《湖南有色金属》2010,26(2):34-36,46
利用光学显微镜、X射线衍射和扫描电镜等分析研究含铈镁合金AZ91D(0.25%Ce、0.7%Ce、0.95%Ce)的显微组织,并对其力学性能进行了测试,同时与不含铈镁合金AZ91D进行了比较。结果表明,加入一定量Ce后的镁合金AZ91D形成杆状化合物Al4Ce,被推移到生长界面,阻碍枝晶的自由生长,从而细化合金显微组织;Ce能提高镁合金AZ91D抗拉强度和硬度,而对其屈服强度和延伸率影响不大;加入0.7%Ce的AZ91D镁合金晶粒细化效果和综合力学性能比较理想。  相似文献   

19.
Laser keyhole welding of Ti-6Al-4V titanium alloy to AZ31B magnesium alloy was developed, and the correlations of process parameters, joint properties, and bonding mechanism were studied. The results show that the offset from the laser beam center on AZ31B side to the edge of the weld seam plays a big role in the joint properties by changing the power density irradiated at the Ti–Mg initial interface. The optimal range of the offset is 0.3 to 0.4mm in the present study. Some lamellar and granular Ti-rich mixtures are observed in the fusion zone, which is formed by intermixing melted Ti-6Al-4V with liquid AZ31B. The maximum ultimate tensile strength of the joints reaches 266 MPa. Furthermore, the fracture surface consists of scraggly remaining weld metal and smooth Ti surface. The higher the failure strength, the smaller the proportion of smooth Ti surface to whole interface is. Finally, the bonding mechanism of the interfacial layer is summarized by the morphologies and test results of fracture surfaces.  相似文献   

20.
The AZ31B magnesium alloy sheet added with 0.5 wt.% Ce was welded with friction stir welding(FSW).The microstructures and mechanical properties of the welded joint were investigated.The results showed that the microstructures in the weld nugget zone were uniform and with small equiaxed grains.The grains in the heat-affected zone and the thermo-mechanical affected zone were coarser than those in the base metal zone and the weld nugget zone.The ultimate tensile strength of AZ31B magnesium alloy added with 0.5...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号