首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
XPS data for thin (less than 100 nm) oxide films obtained by oxidation of Ni-4 Cr and Ni-12.5 Cr alloys at 500°C (0.5 h) are discussed. Thermodynamic analysis of 3 NiO + 2 Cr = Cr2O3 + 3 Ni solid-phase reaction is given, in which both the Gibbs energy change in the thermochemical process and the change in the interface energy at the alloy-oxide film boundary are taken into account.  相似文献   

2.
An isothermal section of the system Al2O3-CaO-CoO at 1500 K has been established by equilibrating 22 samples of different compositions at high temperature and phase identification by optical and scanning electron microscopy, X-ray diffraction, and energy dispersive spectroscopy after quenching to room temperature. Only one quaternary oxide, Ca3CoAl4O10, was identified inside the ternary triangle. Based on the phase relations, a solid-state electrochemical cell was designed to measure the Gibbs energy of formation of Ca3CoAl4O10 in the temperature range from 1150 to 1500 K. Calcia-stabilized zirconia was used as the solid electrolyte and a mixture of Co + CoO as the reference electrode. The cell can be represented as: From the emf of the cell, the standard Gibbs energy change for the Ca3CoAl4O10 formation reaction, CoO + 3/5CaAl2O4 + 1/5Ca12Al14O33 → Ca3CoAl4O10, is obtained as a function of temperature: /J mol−1 (±50) = −2673 + 0.289 (T/K). The standard Gibbs energy of formation of Ca3CoAl4O10 from its component binary oxides, Al2O3, CaO, and CoO is derived as a function of temperature. The standard entropy and enthalpy of formation of Ca3CoAl4O10 at 298.15 K are evaluated. Chemical potential diagrams for the system Al2O3-CaO-CoO at 1500 K are presented based on the results of this study and auxiliary information from the literature.  相似文献   

3.
The corrosion behavior of an amorphous Co69Fe4.5Ni1.5Si10B15 alloy ribbon was examined as a function of solution temperature (15 °C to 55 °C) and pH (3 to 11). The results of potentiodynamic polarization tests in H2SO4 solution, NaCl solution, and HCl + NaOH solution at various levels of pH showed that the corrosion resistance for the alloy ribbon significantly deteriorated with increasing temperature and decreasing pH for given conditions. The Co69Fe4.5Ni1.5Si10B15 alloy was actively dissolved in solutions at pH 3 to 9 but passivated in a solution at pH 11. By comparison of the corrosion behaviors of Co69Fe4.5(Nb,Cr,Ni)1.5Si10B15 alloys in the solution at pH 11, Ni was considered to contribute less in improving the corrosion resistance of the alloy than did Cr and Nb.  相似文献   

4.
Corrosion of boilers and heat exchangers is accelerated in the presence of vanadium, sodium, and sulfur from low-grade fuels. Several iron- and nickel-based alloys were immersed in 60 mol% V2O5–40Na2SO4 salt for 1000 h in order to investigate their degradation behavior at 600 °C in air. Materials performance was analyzed by means of substrate recession rate and metallographic characterization. Their corrosion mechanism is characterized by the formation of a sulfide/oxide layer adjacent to the metal, the dissolution of scale oxides in the molten deposit, and their precipitation near the outer surface of the deposit. High Ni- and Cr-containing alloys show the lowest metal loss rates. Al addition was detrimental due to low-melting eutectic AlVO4–V2O5 formation. Fe–Cr-based alloys showed the highest metal loss rates. In such alloys, high Cr additions (above 20%) did not improve the performance due to the negative synergetic effect by simultaneous dissolution of Fe2O3 and Cr2O3. The predominant salt composition at the corrosion front varied from vanadate rich to sulfate rich during the exposure. This change in the attacking salt makes it difficult to find a protective material for mixed sulfate–vanadate-induced corrosion.  相似文献   

5.
Cyclic and isothermal oxidation behavior on some Ni-Cr alloys   总被引:1,自引:0,他引:1  
Additions of 3 wt.% Mn and 3 wt.% Si were made to Ni-20Cr. These alloys, along with Ni-20Cr and Ni-40Cr were oxidized for 100 1-hr cycles at 1100°C and 50 1-hr cycles at 1200° C. Oxidation behavior was judged by sample weight and thickness change, metallography, x-ray diffraction, and electron microprobe analysis. These tests showed that Ni-40Cr and Ni-20Cr-3Si were about the same and were the most oxidation-resistant alloys. Ni-20Cr-3Mn was not as oxidation resistant, especially at 1200° C. Ni-20Cr was far less oxidation resistant than any of the other alloys. The Ni-40Cr and Ni-20Cr-3Si relied on a protective layer of Cr2O3 for their oxidation resistance. A SiO2 layer was noted beneath the Cr2O3 layer on the Ni-20Cr-3Si, but had apparently only a second-order effect. The source of improved protection of the Ni-20Cr-3Mn was apparently the formation of a relatively adherent MnCr2O4 layer at the metal-oxide interface.  相似文献   

6.
The sulfidation of Ni-10Cr-5Al, Ni-20Cr-5Al, and Ni-50Cr-5Al, and of the same alloys containing 1% Y, was studied in 0.1 atm sulfur vapor at 700°C. The sulfidation process followed linear kinetics for all the alloys except Ni-50Cr-5Al-1Y, and possibly Ni-50Cr-5Al, which followed the parabolic law. The reaction rates decreased with increasing chromium content in alloys without yttrium, and the addition of yttrium reduced the rates by at least a factor of two for the alloys containing 10 and 20% Cr and by an order of magnitude for Ni-50Cr-5Al. Alloys containing 10 and 20% Cr (with and without yttrium) formed duplex scales consisting of an outer layer of NiS1.03 and an inner lamellar layer of a very fine mixture of Cr2S3 and A12O3 in a matrix of NiS1.03. The two alloys containing 50% Cr formed only a compact layer of Cr2S3, which was brittle and spalled during cooling. The lamellae in the duplex scales were parallel to the specimen surface and bent around corners. The lamellae were thicker than those on Ni-Al binary alloys. The lamellae were also thicker in scales on the 20% Cr alloy than on the 10% Cr alloy. The presence of yttrium refined the lamellae and increased the lamellae density near the scale/metal interface in the 10% alloy, but in the 20% Cr alloy the lammellae were thicker and more closely spaced. Platinum markers were found in the inner portion of the exterior NiS1.03 layer close to the lamellar zone. A counter-current diffusion mechanism is proposed involving outward cation diffusion and inward sulfur diffusion, although diffusion was not rate controlling for alloys containing 10 and 20% Cr. Auger analysis of scales formed on Ni-50Cr-1Y showed an even distribution of yttrium throughout the layer of Cr2S3, suggesting that some yttrium dissolved in the sulfide. The reduced sulfidation rate of samples containing yttrium is explained by the possible dissolution of yttrium as a donor. The presence of Y4+ would then decrease the concentration of interstitial chromium ions in the N-type layer of Cr2S3, which would decrease the reaction rate.  相似文献   

7.
In this work, a facile route using a simple solvothermal reaction and sequential heat treatment process to prepare porous Y2O3 microcubes is presented. The as-synthesized products were characterized by X-ray powder diffraction (XRD), scanning electronic microscope (SEM), energy dispersive spectrometer (EDS), thermogravimetric analysis (TG), and differential thermal analysis (DTA). The thermal decomposition process of the Y2O3 precursor was investigated. SEM results demonstrated that the as-prepared porous Y2O3 microcubes were with an average width of about 20 μm and thickness of about 8 μm. It was found that the morphology of the Y2O3 precursor could be readily tuned by varying the molar ratio of S2O82− to Y3+. Y2O3:Eu3+ (6.6%) microcubes were also prepared and their photoluminescence properties were investigated.  相似文献   

8.
The simultaneous oxidation and sulfidation of Cr, Ni-10Cr, Ni-20Cr, and Ni-30Cr was studied at 800°C in three gases falling within the Cr2O3 stability field of the Cr-S-O system. The sulfur partial pressure remained constant at 1×10?6 atm, whereas the oxygen partial pressure varied from 5×1021 to 5×10?20 atm, and the carbon activity varied from 0.108 to 0.416. Reaction kinetics were measured, and the reaction products were characterized by X-ray diffraction, metallography, scanning electron microscopy, and X-ray energy dispersive analysis. Reaction rates decreased with increasing oxygen partial pressure and decreased with increasing chromium content of the alloys. Sulfides always formed along with Cr2O3, even though the gases fell within the oxide stability field. No carburization was observed even though carbon activities were sufficiently high to form carbides. The reaction mechanisms are discussed, and the absence of carburization is analyzed on the basis of a three-dimensional stability diagram.  相似文献   

9.
Yttrium ions of 150 keV energy were implanted into the alloys Ni-20Cr, Ni-4Cr, and into nickel. The microstructures were then characterized using transmission electron microscopy, selected area channeling patterns and back-scattered electron images. Low yttrium fluences between 1×1014 and 5× 1015 Y+/cm2 did not alter the microstructures of Ni-20Cr. However, fluences of 1×1016, 5×1016, and 7.5×1016 caused the crystalline structures of the alloy to be replaced by an amorphous phase. Fluences of 7.5×1016 Y+/cm2 also rendered Ni-4Cr and nickel amorphous. Self-ion implantation experiments on Ni-20Cr did not cause the amorphous phase to form. The depth distribution of elements in Ni-20Cr following yttrium ion implantation (7.5× 1016 Y+/cm2) was determined by Auger electron spectroscopy. This showed in addition to the added yttrium a surface depletion in nickel concentration and a simultaneous enrichment in chromium concentration. At approximately 500 Å, the chromium concentration is approximately 32 at.%. This depletion/enrichment zone extends throughout the implanted layer. Annealing the Ni-20Cr implanted with 7.5×1016 Y+/cm2 in vacuum for one hour at 600°C resulted in the recrystallization of Ni-Cr solid solution and the formation of very fine grains of Y2O3. Annealing at 800°C for 5 minutes showed recrystallized Ni-Cr, Y2O3, and an additional phase or phases.  相似文献   

10.
11.
Effects of temperature and potential on the electrochemical corrosion behavior of alloy AISI 304 (UNS S30400) Stainless steel were investigated in 3 wt.% cerium nitrate (Ce[NO3]3.6H2O) solution. With an increase in electrolyte temperature from ambient temperature to 90°C, the corrosion potential of the alloy shifted towards the noble direction, and the resistance to polarization increased due to the formation of Ce-oxide on the electrode surface. The oxide films formed at the open circuit potential (OCP) and a passive potential of 0.4 VSCE were examined by x-ray photoelectron spectroscopy (XPS). The oxide film formed at 50°C and a passive potentialof 0.4 VSCE consists of mixed oxides of Ce and Cr, whereas that at OCP consists of only Cr oxide. The formation of Cr oxides on the electrode surface was primarily due to the nitrate (NO3 ) ions in Ce(NO3)3.6H2O electrolyte.  相似文献   

12.
The effect of molybdenum additions 5, 10, 15, and 20 wt. %, on the sulfidation behavior of Ni-20Cr, and the effect of chromium additions, 5, 10, 15, and 20 wt.%, on the sulfidation of Ni-20Mo were studied in pure sulfur vapor at 700°C. In general, the alloys followed a linear or near-linear rate law, the sulfidation rate of Ni-20Mo being slightly less than that of Ni-20Cr. The alloys having the lowest ternary addition, e.g., Ni-Cr-5Mo and Ni-20Mo-5Cr. exhibited the most rapid reaction rates. The highest alloying additions of 20 wt.% had no appreciable benefit on reaction rates. Scale structures were complex but generally consisted of several layers. The outer layer was always NiS1.03, although both binaries formed Ni3S2 within the NiS1.03. An inner layer of Cr3S4 existed in which there was considerable dissolved molybdenum. A thin, intermediate layer of Cr2S3 generally formed between the Cr3S4 and the outer nickel sulfide. An innermost layer of MoS2 formed on all alloys containing more than 10 wt. % Mo, and a second phase of Mo2S3 formed within the MoS2 on Ni-20Mo. Although the scales changed with alloy composition, no significant changes in reaction rate were observed. Notable differences in both scale structure and reaction kinetics between this study and previous studies were apparent. The differences and possible reaction mechanisms are discussed.  相似文献   

13.
Olivine structured LiFePO4/C (lithium iron phosphate) and Mn2+-doped LiFe0. 98Mn0. 024/C powders were synthesized by the solid-state reaction. The effects of manganese partial substitution and different carbon content coating on the surface of LiFePO4 were considered. The structures and electrochemical properties of the samples were measured by X-ray diffraction (XRD), cyclic voltammetry (CV), charge/discharge tests at different current densities, and electrochemical impedance spectroscopy (EIS). The electrochemical properties of LiFePO4 cathodes with x wt. % carbon coating (x=3, 7, 11, 15) at γ=0. 2C, 2C (1C=170 mAh·g-1) between 2. 5 and 4. 3 V were investigated. The measured results mean that the LiFePO4 with 7 wt. % carbon coating shows the best rate performance. The discharge capacity of LiFe0. 98Mn0. 02PO4/C composite is found to be 165 mAh·g 1 at a discharge rate, γ=0. 2C, and 105 mAh·g-1 at γ=2C, respectively. After 10cycles, the discharge capacity has rarely fallen, while that of the pristine LiFePO4/C cathode is 150 mAh·g-1 and 98 mAh·g-1 at γ=0. 2 and 2C, respectively. Compared to the discharge capacities of both electrodes above, the evident improvement of the electrochemical performance is observed, which is ascribed to the enhancement of the electronic conductivity and diffusion kinetics by carbon coating and Mn2+-substitution.  相似文献   

14.
In the Kroll process for titanium sponge metal production, TiCl4 gas is introduced and reacted with molten magnesium metal via a gas-liquid reduction reaction. The magnesium reduction reaction of the mixed salt of TiCl2-MgCl2 via a liquid-liquid reaction has been investigated and the results are reported in this article. First, the molten mixed salt was synthesized through chlorination reaction of solid titanium sponge placed in molten MgCl2 salt, while TiCl4 gas was bubbled at around 1,173K. Then, the TiCl2-MgCl2 was reacted with molten magnesium at similar temperatures. This proposed magnesium reduction reaction of the TiCl2-MgCl2 in the molten state may be more efficient, easier to control, and suitable for realizing continuous titanium production. For more information, contact Akio Fuwa, Waseda University, Department of Materials Science and Engineering, Faculty of Science and Engineering, Okubo 3-4-1, Shinjuku-ku, Tokyo, Japan 169-8555; +81-3-5286-3313; fax +81-3-5286-3488; e-mail akiofuwa@waseda.jp.  相似文献   

15.
Regularities of the effect produced by Ce2(SO4)3 salt introduced in an aqueous electrolyte containing Zr(SO4)2 on the plasma-electrolytic formation of oxide coatings on titanium, their composition, and structure are studied. ZrO2 + CeO x + TiO2 three-phase oxide coatings with a thickness about 10 μm are obtained. The coatings involve ZrO2 cubic phase. The ZrO2-to-TiO2 phase ratio in the coatings can be controlled. The zirconium content in the coatings reaches 20 at %, while that of cerium is 3–5 at %. The surface layer (∼3-nm thick) contains Ce3+ (∼30%) and Ce4+ (∼70%). Pores in the surface part of coatings have diameters around or smaller than 1 μm and are regularly arranged. The obtained systems have a certain catalytic activity with respect to the oxidation of CO to CO2 at temperatures above 400–450°C. The coatings are corrosion-resistant in chloride-containing environments. The thickness h of coatings depending on the charge Q supplied to the cell is described by the equation h = h 0(Q/Q 0) n , where n = 0.35 and h 0 is the thickness of the coating formed at Q 0 = 1 C/cm2.  相似文献   

16.
A series of red-emitting Ca2-xAl2SiO7:xEu3+(x = 1 mol.%-10 mol.%) phosphors were synthesized by the sol-gel method.The effects of annealing temperature and doping concentration on the crystal structure and luminescence properties of Ca2Al2SiO7:Eu3+ phosphors were investigated.X-ray diffraction(XRD) profiles showed that all peaks could be attributed to the tetragonal Ca2Al2SiO7 phase when the sample was annealed at 1000℃.Scanning electron microscopy(SEM) micrographs indicate that the phosphors have an irregularly rounded morphology with particles of about 200 nm.Excitation spectra showed that the strong broad band at around 258 nm and weak sharp lines in 350-490 nm were attributed to the charge transfer band of Eu3+-O2-and f-f transitions within the 4f6 configuration of Eu3+ ions,respectively.Emission spectra implied that the red luminescence could be attributed to the transitions from the 5D0 excited level to the 7FJ(J = 0,1,2,3,4) levels of Eu3+ ions with the main electric dipole transition 5D0→7F2(618 and 620 nm),and Eu3+ ions prefer to occupy a lower symmetry site in the crystal lattice.Moreover,the photoluminescence(PL) intensity was strongly dependent on both the sintering temperature and doping concentration,and the highest PL intensity was observed at an Eu3+ concentration x = 7 mol.% after annealing at 1100℃.The obtained Ca2Al2SiO7:Eu3+ phosphor may have potential application for the red lamp phosphor.  相似文献   

17.
Metal-insulator-semiconductor (MIS) structures containing Ge nanocrystals embedded in both Al2O3 and ZrO2/Al2O3 are fabricated by an ultra-high vacuum electron-beam evaporation method. Secondary ion mass spectroscopy (SIMS) results indicate that Ge embedded in Al2O3 diffuses towards the surface of the Al2O3 layer after annealing at 800°C in N2 ambient for 30 min. Ge embedded in ZrO2/Al2O3 is stable, thus inducing less leakage current. Capacitance voltage studies indicate that annealing can effectively passivate the negatively charged trapping centers. Memory effect of the Ge nanoclusters is verified by hysteresis in the C-V curves in the Al2O3/Ge+Al2O3/Al2O3 and ZrO2/Ge+Al2O3/Al2O3 samples. This article is based on a presentation in “The 7th Korea-China Workshop On Advanced Materials” organized by the Korea-China Advanced Materials Cooperation Center and the China-Korea Advanced Materials Cooperation Center, held at Ramada Plaza Jeju Hotel, Jeju Island, Korea on August 24–27, 2003.  相似文献   

18.
Phase equilibria in the ZrO2-Nd2O3-Y2O3 system at 1523-1873 K have been investigated by x-ray diffraction (XRD) and scanning electron microscopy combined with energy dispersive x-ray spectroscopy (SEM/EDX). Temperatures of phase transformations were determined by differential thermal analysis. Temperatures of invariant reactions in the ZrO2-Nd2O3 system F = A + Pyr and H = F + A were determined as 1763 and 2118 K respectively and thermodynamic parameters of phases were re-assessed. Phase transformations in ternary systems were determined at 1732 K for composition ZrO2-48.46Nd2O3-5.38Y2O3 (mol%) and at 1744 and 1881 K for composition ZrO2-79.09Nd2O3-2.75Y2O3 (mol%). They were interpreted using XRD investigation before and after DTA as Pyr + B → F, Pyr → F and A → B, respectively. The solubility of the Y2O3 in pyrochlore phase was found to exceed 10 mol%. The thermodynamic parameters of the ZrO2-Nd2O3-Y2O3 system were reassessed taking into account solubility of Y2O3 in the Nd2Zr2O7 pyrochlore phase (Pyr). It is assumed that Y3+ substitutes Nd3+ and Zr4+ in their preferentially occupied sublattices. Ternary parameter was introduced into fluorite phase (F) for better reproducing of phase equilibria. Mixing parameters were reassessed for phase A (Nd2O3 based solution), monoclinic phase B and cubic phase C (Y2O3 based solution). The isothermal sections calculated for the ZrO2-Nd2O3-Y2O3 system are in the reasonable agreement with experimental results.  相似文献   

19.
Cr 2 O 3-coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode materials were synthesized by a novel method. The structure and electrochemical properties of prepared cathode materials were measured using X-ray diffraction (XRD), scanning electron microscopy (SEM), charge-discharge tests, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The measured results indicate that surface coating with 1.0 wt% Cr 2 O 3 does not affect the LiNi 1/3 Co 1/3 Mn 1/3 O 2 crystal structure (α-NaFeO 2 ) of the cathode material compared to the pristine material, the surfaces of LiNi 1/3 Co 1/3 Mn 1/3 O 2 samples are covered with Cr 2 O 3 well, and the LiNi 1/3 Co 1/3 Mn 1/3 O 2 material coated with Cr 2 O 3 has better electrochemical performance under a high cutoff voltage of 4.5 V. Moreover, at room temperature, the initial discharging capacity of LiNi 1/3 Co 1/3 Mn 1/3 O 2 material coated with 1.0 wt.% Cr 2 O 3 at 0.5C reaches 169 mAh·g 1 and the capacity retention is 83.1% after 30 cycles, while that of the bare LiNi 1/3 Co 1/3 Mn 1/3 O 2 is only 160.8 mAh·g 1 and 72.5%. Finally, the coated samples are found to display the improved electrochemical performance, which is mainly attributed to the suppression of the charge-transfer resistance at the interface between the cathode and the electrolyte.  相似文献   

20.
The kinetics of low-temperature dissolution of oxides Y2O3 and Fe2O3 in an iron matrix during mechanical alloying has been studied using electron microscopy. It has been shown that the dissolution rate upon deformation of primary coarse oxides Fe2O3 in α iron (and, hence, saturation of the α matrix with oxygen) during treatment in a ball mill for up to 10 h is several times higher than the dissolution rate of Y2O3 oxides. The high-temperature (1100°C) annealing of a mechanoalloyed mixture of Fe + 1.5% Y + 1.35% Fe2O3 leads to the precipitation of 60% (of the total number of particles) secondary oxides 2–5 nm in size and only of 5–7% secondary nanooxides in a mechanoalloyed mixture of Fe + 2% Y2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号