首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the optical properties of thin titanium suboxide (TiOx) films for applications in laser transmission welding of polymers. Non-absorbing fibers were coated with TiOx coatings by reactive magnetron sputtering. Plasma process parameters influencing the chemical composition and morphology of the deposited thin films were investigated in order to optimize their absorption properties. Optical absorption spectroscopy showed that the oxygen content of the TiOx coatings is the main parameter influencing the optical absorbance. Overtreatment (high power plasma input) of the fiber surface leads to high surface roughness and loss of mechanical stability of the fiber. The study shows that thin substoichiometric TiOx films enable the welding of very thin polyurethane membranes and polyamide fibers with improved adhesion properties.  相似文献   

2.
Tantalum doped TiO2 thin films ((TiO2)1−x (Ta2O5) x , x=0, 0.1%, 0.3%, 0.5%, 0.8%) were prepared on ITO-coated substrates by means of the sol–gel method and spin coating technology followed by rapid thermal annealing treatment (RTA). The effects of various processing parameters, including Ta content (x=0–0.8%) and annealing temperature, on the growth and properties of thin films were investigated. Structural characteristics by X-ray diffraction analysis indicated that the doping of Ta2O5 in the TiO2 without change the anatase structure of TiO2 thin films. The optical transmittance of (TiO2)1−x (Ta2O5) x thin films decrease from 50% down to 20% with increasing the Ta2O5 concentrations from x=0.00 to x=0.8%. The absorption coefficient shows energy gap were decreased with increasing Ta2O5 content from 2.932 eV for x=0.00 to 2.717 eV for x=0.8%. Doping TiO2 with Ta2O5 can lower its band gap and shift its optical response to the visible region.  相似文献   

3.
Nanostructured titanium oxide (nano-TiO x ) thin films for uncooled IR detectors were fabricated by dc reactive magnetron sputtering and post-deposition annealed in oxygen atmosphere. The crystalline structure and surface morphology were characterized by glancing incidence X-ray diffraction (GIXRD) and field emission scanning microscopy. The results of GIXRD measurements indicate that TiO x thin film deposited at room temperature is amorphous. A mixture of anatase and rutile nanocrystalline structure phase were present in oxygen annealed TiO x thin film. A weak absorption peak around 438 cm?1 corresponding to Ti–O stretching vibration is observed by Fourier transform infrared spectroscopy with annealed TiO x thin film. The X-ray photoelectron spectra reveals Ti3+ and Ti4+ ions are coexisting in TiO x films. The optical spectra of the films indicate that the optical absorption edge of the nano-TiO x film exhibits a red shift compared to the as-deposited film. Furthermore, compared to bulk TiO x , a blue shift was observed in both of the deposited and annealed films due to quantum size effect. The dependence of resistivity on temperature reveals both the absolute value of temperature coefficient of resistivity (TCR) and activation energy of TiO x thin film increase significantly after annealing in oxygen.  相似文献   

4.
TiO2 and TiO2:Nd thin films were deposited using reactive magnetron sputtering process from mosaic Ti–Nd targets with various Nd concentration. The thin films were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and spectroscopic techniques. Photoluminescence (PL) in the near infrared obtained upon 514.5 nm excitation was also examined. The relationship between the Nd concentration, structural, optical and photoluminescence properties of prepared thin films was investigated and discussed. XRD and TEM measurements showed that an increase in the Nd concentration in the thin films hinders the crystal growth in the deposited coatings. Depending on the Nd amount in the thin films, TiO2 with the rutile, mixed rutile–amorphous or amorphous phase was obtained. Transmittance measurements revealed that addition of Nd dopant to titania matrix did not deteriorate optical transparency of the coatings, however it influenced on the position of the fundamental absorption edge and therefore on the width of optical band gap energy. All TiO2:Nd thin films exhibited PL emission that occurred at ca. 0.91, 1.09 and 1.38 μm. Finally, results obtained for deposited coatings showed that titania with the rutile structure and 1.0 at.% of Nd was the most efficient in VIS to NIR photon conversion.  相似文献   

5.
The a.c. photoconductivity of bulk polycrystalline In x Se1–x and the optical properties of amorphous In x Se1–x thin films were investigated. The effect of heat treatment on the absorption coefficient of InSe thin films was also studied. The spectral response of the photoconductivity of polycrystalline In x Se1–x related to the near-edge absorption spectrum, shows a well-defined maximum corresponding to the width of the forbidden gap. Polycrystalline In x Se1–x realizes the behaviour of photoconductors which are sensitive in a spectral range between 400 and 1700 nm. Optical absorption of amorphous In x Se1–x thin films was recorded as a function of photon energy and the data were used to deduce the value of optical energy gap of the films. It was found that the optical energy gap decreased with increasing indium content in both bulk polycrystalline and amorphous thin films. The effect of heat treatment on the optical gap of the film has been interpreted in terms of the density of states model of Mott and Davis.  相似文献   

6.
TiO2 film has been used in many industrial components such as laser filters, protection mirrors, chemical sensors, and optical catalysts. Therefore, the thermal properties of TiO2 thin films are important in, e.g., reducing the thermal conductivity of ceramic coatings in gas turbines and increasing the laser damage threshold of antireflection coatings. The thermal conductivity of four kinds of TiO2 thin films, prepared by dc magnetron sputtering, was measured using the 3 method in the temperature range from 80 K to room temperature. The results showed that the thermal conductivity of TiO2 thin films strongly depends on the thickness and the microstructure of the films. The films with smaller grain size and thinner thickness have smaller thermal conductivities.  相似文献   

7.
Abstract

The effects of ion-beam energy on the internal stress and optical properties of tantalum pentoxide (Ta2O5) thin film have been investigated. Ta2O5 thin films were deposited on unheated glass substrates by ion-beam sputter deposition (IBSD) with different ion-beam voltage V b. The mechanical properties, internal stress and surface roughness, and the optical properties, refractive index and absorption, were studied directly after deposition. The refractive index, extinction coefficient and surface roughness were found to depend on the ion-beam energy. The internal stresses were measured by the phase-shifting interferometry technique. The film stress was also found to be related to V b, and a high compressive stress of -0.560 GPa was measured at V b = 750 V. Ta2O5/SiO2 multilayer coatings had smaller average compressive stress than single-layer Ta2O5 film.  相似文献   

8.
The solution gas interface technique by which thin films of Bi2−x As x S3 were deposited is described in this paper. The semiconducting properties of the interface grown Bi2−x As x S3 thin films are studied. The optical absorption, dark resistivity and thermoelectric power of the films were studied and results are reported.  相似文献   

9.
Amorphous TiOx films and Ag layer were deposited by electron-beam evaporation on soda-lime glass at room temperature. The details regarding the structure, surface morphology, and optical properties of the as-prepared TiOx films were examined by X-ray diffraction, scanning electron microscopy, and ultra-violet (UV) -visible-near-infrared (NIR) spectrometry. The TiOx films exhibit amorphous phase with an optical band gap of 3.35 eV. The polygrains oriented along the (111) and (200) directions in the Ag films were adopted to supply carriers into the TiOx film and lower the sheet resistance of the stacked layer. The multilayer exhibited a sufficiently large Ag thickness (>15 nm), low resistance, high UV transmittance, visible transmittance, and high NIR reflection. Dependence of Ag thickness, TiOx bottom-layer, and TiOx overlayer on the optical and electrical properties of TiOx/Ag/TiOx were explored. A figure of merit (FOM) was used to find an optimal structure for a multilayer with superior conductivity and visible transparency. An FOM of 9.8 × 10?2?1) at the visible wavelength of 550 nm for a TiOx/Ag/TiOx stacked layer with an 18-nm-thick Ag and a 20-nm-thick TiOx was achieved. The TiOx/Ag/TiOx sample annealed at 500 °C 10 min also shows a good thermal stability.  相似文献   

10.
The effects of composition, film thickness, substrate temperature, and annealing of amorphous thin films of Se75Ge25−x As x (5⩽x⩽20) on their optical properties have been investigated. X-ray diffraction revealed the formation of amorphous films. The absorbance and transmission of vacuum-evaporated thin films were used to determine the band gap and refractive index. Optical absorption measurements showed that the fundamental absorption edge is a function of glass composition and the optical absorption is due to indirect transition. The energy gap increases linearly with increasing arsenic content. The optical band gap,E opt, was found to be almost thickness independent. The shapes of the absorption edge of annealed samples displayed roughly the same characteristic as those of the unannealed films, but were shifted towards shorter wavelengths; as a result,E opt increased andE e, the width of the band tails, decreases. The increase inE opt is believed to be associated with void removal and microstructural re-arrangement during annealing. The influence of substrate temperature on the optical parameters is discussed.  相似文献   

11.
A series of Pb(1+x)TiO3/PbZr0.3Ti0.7O3/Pb(1+x)TiO3 (PTO/PZT/PTO) and PbZr0.3Ti0.7O3 (PZT) thin films were prepared by a sol–gel method. Different excess Pb content (x) (x = 0, 0.05, 0.10, 0.15, 0.20) were added to the PbTiO3 (PTO) precursors to investigate their effect on ferroelectric and fatigue properties of the PTO/PZT/PTO thin films. X-ray diffraction results show that the crystallization behavior of the PTO/PZT/PTO thin films is greatly affected by the excess Pb content (x) in PTO precursors. Topographic images show that the PTO/PZT/PTO thin films with excess Pb content x = 0.10 appears the densest and the most uniform grain size surface morphology. The ferroelectric and fatigue properties of the films correlate straightforwardly to the crystallization behaviors and excess Pb content (x) in the PTO precursors. The excess Pb content (x) in the PTO layers which acts as a nucleation site or seeding layer for PZT films affects the crystallization of the PTO layer and ultimately affects the perovskite phase formation of the PZT films. With the proper excess Pb content (x = 0.10–0.15) in the PTO precursors, the pure perovskite structure PTO/PZT/PTO thin films, with dense, void-free, and uniform fine grain size are obtained, and a well-saturated hysteresis loop with higher remnant polarization is achieved. Using an appropriate Pb content, the fatigue has been avoided by controlling the inter-diffusion and surface volatilization.  相似文献   

12.
We have studied TiO2, Ag, Ag/TiO2, and Cu/TiO2 coatings grown on track-etched polyethylene terephthalate membranes. The metals and oxides were deposited by reactive vacuum sputtering using a planar magnetron. The microstructure of the samples were examined by scanning and transmission electron microscopy techniques. The elemental composition of the coatings were determined by energy dispersive X-ray microanalysis, and their phase composition was determined by X-ray diffraction at different temperatures and by transmission electron diffraction. Titanium dioxide can be present on the surface of track-etched membranes (TMs) in three forms: nanocrystals of tetragonal anatase with orthorhombic brookite and amorphous TiO2 impurities. The copper-metallized TM has been shown to contain cubic Cu2O. The optical properties of the composite membranes and films have been studied by absorption spectroscopy. The energies of direct and indirect allowed optical transitions have been evaluated from measured absorption spectra of the TiO2, Ag/TiO2, and Cu/TiO2 coatings.  相似文献   

13.
TiO2 and (NdyTi1  y)Ox thin films were deposited by reactive magnetron sputtering process from mosaic Ti–Nd targets and characterised by X-ray diffraction (XRD), Raman optical spectroscopy and nanoindentation technique. XRD measurements revealed that as-prepared titanium dioxide and TiO2 thin films with 4 and 7 at.% of Nd had nanocrystalline rutile structure, while coatings with larger amount of Nd were amorphous. Raman spectroscopy investigations showed that the increase of the neodymium concentration caused amorphisation of the coatings and hindered their crystal growth. All as-prepared coatings were transparent in the visible wavelength range with a transmittance of approximately 80%. The refractive index and extinction coefficient of the thin films gradually decreased with the increase of the neodymium concentration. Micro-mechanical properties, i.e. hardness and elastic modulus, were determined using traditional load-controlled nanoindentation testing and continuous stiffness measurements. The highest hardness and elastic modulus values were obtained for thin films with 7 at.% of Nd and were approximately 14.8 GPa and 166.3 GPa, respectively.  相似文献   

14.
In this study, preparation of SnO2 (0–30 mol% SnO2)–TiO2 dip-coated thin films on glazed porcelain substrates via sol–gel process has been investigated. The effects of SnO2 on the structural, optical, and photo-catalytic properties of applied thin films have been studied by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. Surface topography and surface chemical state of thin films were examined by atomic force microscopy and X-ray photoelectron spectroscopy. XRD patterns showed an increase in peak intensities of the rutile crystalline phase by increasing the SnO2 content. The prepared Sn doped TiO2 photo-catalyst films showed optical absorption in the visible light area exhibited excellent photo-catalytic ability for the degradation of methylene blue under visible light irradiation. Best photo-catalytic activity of Sn doped TiO2 thin films was measured in the TiO2–15 mol% SnO2 sample by the Sn4+ dopants presented substitution Ti4+ into the lattice of TiO2 increasing the surface oxygen vacancies and the surface hydroxyl groups.  相似文献   

15.
Abstract

Hydrophilic Cu–TiO2 thin films with a gradient in the Cu concentration were prepared on glass by layer-by-layer dip-coating from TiO2 precursors. The effects of the Cu doping on the structure and properties of TiO2 self-cleaning thin films are discussed. The Cu gradient markedly affects the hydrophilicity of the films, with the water contact angle significantly reduced compared with those of the pure or uniformly doped TiO2 thin films. This enhanced hydrophilicity is explained by the more efficient absorption of the solar light and by the reduced recombination of photoexcited electrons and holes in the TiO2 films containing a gradient of Cu dopants.  相似文献   

16.
In this paper a method for separate measurement of the extinction of optical thin films is presented. The method combines a laser calorimetric technique and a light-scattering goniophotometer. As an example, the spectral extinction properties of r.f. reactively sputtered TiO2 films were measured. Under certain conditions absorption indices of 10-5 or less can be achieved. Thus light scattering, rather than absorption, is the dominant optical loss mechanism in sputtered TiO2 films.  相似文献   

17.
The ultraviolet, visible and infrared properties of unannealed and annealed amorphous Mn/SiO cermet thin films (300 to 1000 nm thick) prepared by vacuum evaporation at 5.0×10–4 Pa are investigated. The ultraviolet and visible results are analysed assuming optical absorption by indirect transitions. A systematic reduction of the optical energy gap and an increase in the width of the band-tail region is observed with increasing metallic content. The effects of the ratio deposition rate/residual pressure and substrate temperature on the optical properties of SiO x (1<x<2) thin films are also investigated.  相似文献   

18.
Pb1 – x Ca x TiO3 thin films with x = 0.24 composition were prepared by the polymeric precursor method on Pt/Ti/SiO2/Si substrates. The surface morphology and crystal structure, and the ferroelectric and dielectric properties of the films were investigated. X-ray diffraction patterns of the films revealed their polycrystalline nature. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses showed the surface of these thin films to be smooth, dense and crack-free with low surface roughness. The multilayer Pb1 – x Ca x TO3 thin films were granular in structure with a grain size of approximately 60–70 nm. The dielectric constant and dissipation factor were, respectively, 174 and 0.04 at a 1 kHz frequency. The 600-nm thick film showed a current density leakage in the order of 10–7 A/cm2 in an electric field of about 51 kV/cm. The C-V characteristics of perovskite thin films showed normal ferroelectric behavior. The remanent polarization and coercive field for the deposited films were 15 C/cm2 and 150 kV/cm, respectively.  相似文献   

19.
Abstract

The optical properties of a-Se100-xSbx thin films (where x = 0, 0.5, 2.5, 5 and 10) have been studied in the wavelength range 540–900 nm. It was found that the optical band gap increases with increasing Sb concentration in the a-Se100-x Sb x system. The refractive index n decreases, while the extinction coefficient k increases with increasing photon energy. DC conductivity measurements of a-Se100-x Sb x thin films have been reported in the temperature range 349–375 K. It has been observed that the conductivity increases while the activation energy decreases with increasing Sb concentration. We correlated the optical band gap with the electronegativity of the sample. The band gap increases with the decrease in electronegativity of each sample of a-Se100-x Sb x .  相似文献   

20.
Titanium dioxide (TiO2) thin films have been successfully synthesized deposited on glass substrates by the sol-gel dip-coating method through different pretreating processes, including heated at 100, 500°C, via freeze drying, microwave heating for 10 min and subsequently annealed at 500°C for 2 h. The as-synthesized TiO2 films were characterized using X-ray diffraction (XRD), atomic force microscopy (AFM) and ultravioletvisible (UV-vis) absorption spectra analysis technology. The preparation of the precursor sols and TiO2 films were described in detail. Effects of 100, 500°C, freeze drying and microwave heating pretreatment on crystalline structure, surface morphology, roughness, particle size, optical property and electronic transition of TiO2 thin films have been primarily investigated. The XRD results demonstrate that the TiO2 films were well-crystallized and consisted of anatase TiO2 phase only with (101) plane. The average crystalline size is only about 15 nm at 100°C pretreatment and the absorption edge shifts to shorter wavelength comparing with that at 500°C, freeze drying and microwave heating pretreatment. Pretreatment process is important during the preparation of thin films and has obviously effect on the structure and optical property of TiO2 films due to the different heating mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号