首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

In this study, polyurethane (PU) composites have been produced with oil palm empty fruit bunch (EFB) and polyethylene glycol (PEG), molecular weight (MW) of 200 (PEG200), 400 (PEG400), and polypropylene glycol (PPG) with MW of 400 (PPG400) used as polyols. The effect of isocyanate (NCO)/hydroxyl (OH) ratio and PPG400/PEG400 ratio on the impact strength, dimensional stability (immersion test), and thermal behavior were investigated. The study revealed that as the NCO/OH ratio was increased, the impact strength increased, and the absorption and swelling of the composites either in water or dimethylformamide (DMF) decreased. The decrease in the onset and peak temperatures, and the increase in the enthalpy as the NCO/OH ratio was increased from 0.8 to 1.1 were attributed to the disruption of crystalline region due to the occurrence of cross‐linking. As for NCO/OH ratio of 1.1 onward, the increase in onset and peak temperatures were due to the increase in the degree of cross‐linking. On the other hand, the decrease in the enthalpy was due to the formation of allophanates. Thermal behavior of the composites made from the glycol mixture was predominantly influenced by the PPG400.  相似文献   

2.
A system of synthesis of polyether-based urethanes was developed which had sufficient flexibility in composition so that transport properties could be optimized. Mixtures of poly(oxyethylene) glycol (PEG) and poly(oxypropylene) glycol (PPG) of a variety of molecular weights were tied together by varying amounts of kinds of “hard segments.” Thus, the water swell, the mechanical properties, and the size of the soft blocks and hard blocks could be varied. With a fixed content of hard segments, the water absorption decreased with decrease in the PEG/PPG ratio, demonstrating the feasibility of producing controlled changes in hydrophilicity of the polymer without significant change in the mechanical strength. Some polyurethanes based on PEG 600 and PPG 425 had a very good high value of Pw/Ps but a somewhat low value of Pw. The polyurethanes prepared by using phenylenediamines as chain extenders had markedly enhanced modulus and an extended rubbery plateau region, as anticipated.  相似文献   

3.
This article was focused on the effects of the NCO/OH molar ratio and 2,2-bis(hydroxyl methyl) propionic acid (DMPA) content during prepolymerization on the physical properties of synthesized waterborne polyurethane (WBPU) by using the polycaprolactone–poly(ethyl glycol)–polycaprolactone triblock copolydiol (PCL–PEG–PCL) as the soft segment. The results showed that the particle size of the WBPUs' dispersion decreased with a decreasing NCO/OH molar ratio or increasing DMPA content. Regarding thermal and mechanical properties, the WBPUs had a higher Tg's and lower Tm's and a higher breaking stress and a lower breaking strain of film with the NCO/OH molar ratio or DMPA content increase. The increasing NCO/OH molar ratio was advantageous to the water vapor permeability (WVP)-breaking stress balance, but the effect of the DMPA content on the WVP was not significant. The WBPU with PCL–PEG–PCL as the soft segment had a smaller particle size in dispersion and a better WVP-breaking stress balance than those of WBPU with the blending PCL and PEG as the soft segment. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1301–1311, 1998  相似文献   

4.
Polyurethane (PU) and polyhydric alcohols composites were successfully prepared to be used as coating materials for fabrics. The effects of various polyhydric alcohols on the PU composites properties have been investigated. The tensile strengths, glass-transition temperatures, thermal-mechanical properties, and swelling capacities of the PU/polyhydric-alcohol-blended films are described in detail, along with their surface and cross-sectional morphologies. The tensile strengths and glass-transition temperatures of the PU/polyhydric-alcohol-blended films were found to decrease remarkably with increasing polyhydric-alcohol concentration. The swelling capacities and porosities of the PU/poly(propylene glycol) (PPG)-blended and PU/glycerol-blended films were observed to increase with increasing PPG or glycerol concentration. However, the poly(ethylene glycol) (PEG) concentration in the PU/PEG-blended film did not significantly affect its properties. The air and water-vapor permeability of nonwoven nylon fabrics coated with PU/PPG and PU/glycerol increased with increasing PPG or glycerol contents, while those coated with PU/PEG were unaffected by PEG content. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47429.  相似文献   

5.
Poly(L ‐lactic acid) (PLLA: Mw = 19.4 × 104)/poly(ethylene glycol) (PEG: Mw = 400) blend films were formed by use of a solvent‐cast technique. The properties and structures of these blend films were investigated. The Young's modulus of the PLLA decreased from 1220 to 417 MPa with the addition of PEG 5 wt %, but the elongation at break increased from 19 to 126%. The melting point of PLLA linearly decreased with increases in the PEG content (i.e., pure PLLA: 172.5°C, PLLA/PEG = 60/40 wt %: 159.6°C). The PEG 20 wt % blend film had a porous structure. The pore diameter was 3–5 μm. The alkali hydrolysis rate of this blend film was accelerated due to its porous structure. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 965–970, 2004  相似文献   

6.
E. Piorkowska  R. Masirek 《Polymer》2006,47(20):7178-7188
Plasticization of semicrystalline poly(l-lactide) (PLA) with a new plasticizer - poly(propylene glycol) (PPG) is described. PLA was plasticized with PPG with nominal Mw of 425 g/mol (PPG4) and 1000 g/mol (PPG1) and crystallized. The plasticization decreased Tg, which was reflected in a lower yield stress and improved elongation at break. The crystallization in the blends was accompanied by a phase separation facilitated by an increase of plasticizer concentration in the amorphous phase and by annealing of blends at crystallization temperature. The ultimate properties of the blends with high plasticizer contents correlated with the acceleration of spherulite growth rate that reflected accumulation of plasticizer in front of growing spherulites causing weakness of interspherulitic boundaries. In PLA/PPG1 blends the phase separation was the most intense leading to the formation of PPG1 droplets, which facilitated plastic deformation of the blends that enabled to achieve the elongation at break of about 90-100% for 10 and 12.5 wt% PPG1 content in spite of relatively high Tg of PLA rich phase of the respective blends, 46.1-47.6 °C. Poly(ethylene glycol) (PEG), long known as a plasticizer for PLA, with nominal Mw of 600 g/mol, was also used to plasticize PLA for comparison.  相似文献   

7.
Core–shell‐type microspheres with microphase‐separated shells of polystyrene (PS) and poly(ethylene glycol) (PEG) (microsphereblock: molar ratio: PS/PEG 49.1/45.9 mol %; Mw: PS chain: 1.07 × 104, PEG chain 1.0 × 104; the ratio of arm numbers of PEG to PS: 1.0; microspheregraft: molar ratio: PS/PEG 33.8/55.9 mol %; Mw: PS chain: 1.54 × 104, PEG chain 1.0 × 104, the ratio of arm numbers of PEG to PS: 2.55) were synthesized by crosslinking of spherical domains of poly(2‐hydroxyethyl methacrylate) (PHEMA) and poly(4‐vinyl pyridine) (P4VP) of the microphase‐separated films of poly(ethylene glycol)‐block‐poly(2‐hydroxyethyl methacrylate)‐block‐polystyrene triblock terpolymer (Mn: 2.18 × 104; molar ratio: PS 49.1 mol %, PHEMA 5.0 mol %, PEG 45.9 mol %) and polystyrene‐block‐[poly(4‐vinyl pyridine)‐graft‐poly(ethylene glycol)] block–graft copolymer (Mn: 4.56 × 104; molar ratio: PS 33.8 mol %, P4VP 10.3 mol %, PEG 55.9 mol %; branch number of PEG: 2.55), respectively. The structures of microphase‐separated films were investigated by transmission electron microscopy and small‐angle X‐ray scattering. The effects of the arm number ratio of PS to PEG and the total arm number on the stability of the water/benzene emulsion were investigated. The emulsion stability of oil in water was improved by using the microsphere synthesized with the microspheregraft. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 321–331, 2004  相似文献   

8.
The aqueous solution properties of alkylene oxide polymers and copolymers are related to their interaction with water. In an attempt to better understand this behavior, differential scanning calorimetry has been employed to measure phase changes and water binding in solutions of polyethylene glycol (PEG), polypropylene glycol (PPG), and a 50/50 random copolymer of ethylene oxide and propylene oxide. PEG (M n = 3510) forms a crystalline eutectic with water at 0.48 weight fraction of polymer. The liquidus curve for water can be fit accurately using the Flory–Huggins expression for solute activity with an interaction parameter of 0.05. PPG and the random copolymer do not crystallize and thus do not form a crystalline eutectic. Based on decreases in the heat of fusion of free water with added polymer, PEG binds more water than the copolymer which binds more water than PPG. The estimated hydration numbers per polymer segment are 1.5 for PPG, 2.3 for the copolymer, and 2.7 for PEG.  相似文献   

9.
Polystyrene–PEG crosslinked block copolymers were prepared from styrene copolymerization by either poly(ethylene glycol dimethymethacrylate) (PEG-DM) or macronomer initiators (MIM). Mw values of PEG of PEG-DM were 400, 600, 1000, 1500, 3000, 10,000, and 35,000, and of MIM, 400 and 1500. Swelling in H2O or CHCl3 of the sulfonated and unsulfonated block copolymers were determined under comparable conditions and found to be vary significantly. The ion-exchange capacity and selectivity coefficients of these ionexchange resins were investigated. The capacities of the obtained ion exchangers were varied between 0.4 and 2.9 meq/g. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
The limited availability of fossil resource is causing the urgent need to get renewable chemicals. Solvent liquefaction can convert rice husk into bio‐based chemicals. Rice husk was liquefied in polyhydric alcohol catalyzed by sulfuric acid under atmospheric pressure. The viscosity, residue content, and weight average molecular weight (Mw) of liquefied rice husk were 3089 cps, 23.6% and 4100, respectively. Prolonging the liquefaction time decreased the residue content and increased the average molecular weight. Polyurethane (PU) foams were successfully prepared from the liquefied rice husk with different molar ratios of NCO to OH (NCO/OH). The mechanical properties of PU foams showed that the compressive strength in the vertical direction is higher than that in the horizontal direction. With Increase of the NCO/OH molar ratio from 1.0 to 2.0, compressive strength in the vertical direction of PU foams increased from 70.6 to 114.7 kPa at 10% strain. Thermal analysis results showed that thermal stability of liquefied rice husk‐based PU resins was better than that of fossil‐ and liquefied wood‐ based PU resins. Increasing the NCO/OH molar ratio and inorganic residue of rice husk can help to increase thermal stability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45910.  相似文献   

11.
Trimethylol propane (TMP), polyglycol (PG), and toluene diisocyanate (TDI) were reacted in various molar ratios to produce TMP–TDI–PG–urethane prepolymers and then mixed with equivalent isocyanate generator (Desmodur AP-Stable) in a mixture of m-cresol and naphtha to give polyurethane varnishes which finally became crosslinked films by the casting method. The mechanical properties and viscoelasticities of the PG-modified and PG-free polyurethane crosslinked films and the practicability of magnet wires coated with them were studied in this article. Three different PGs used in this experiment were polyethylene glycol, PEG(#400), polypropylene glycols, PPG(#1000) and PPG(#2000). In the case of adding PEG(#400) for modification, strength at break increased but elongation did not change. Meanwhile, glass transition temperature (Tg) shifted to lower temperature with increasing molar ratio. In the case of adding PPG(#1000) and PPG(#2000) for modification, the samples changed their mechanical properties from hard and brittle to soft and tough. With increasing molar ratios, strength at break initially increased and then decreased gradually, and elongation varied a lot and was consistently contrary to strength at break. Tg occurred at two regions: one at high temperature above 100°C for small molar ratios and the other at low temperature below 100°C for high molar ratios. Besides, for all PG-modified polyurethane crosslinked films, strength at break showed a local maximum at TMP/TDI/PG = 1/1/0.5, which indicated their homogeneous structures. The molar ratios of PG-modified urethane prepolymers, which are suitable for manufacturing practical magnet wires according to testing method JIS-C-3211, are as follows: TMP/TDI/PPG(#100) = 1/1/0.15–0.35 and TMP/TDI/PPG(#2000) = 1/1/0.10. PEG(#400)-modified magnet wires were not accepted on the aging test. The properties of crosslinked films of practical magnet wires are generally as follows: strength at break at 200–700 kg/cm2, elongation less than 41%, and Tg at 100–200°C.  相似文献   

12.
The aim of this study was to evaluate the role of different poly(ethylene glycol):poly(propylene glycol) (PEG:PPG) molar ratios in a triblock copolymer in the cure kinetics, miscibility and thermal and mechanical properties in an epoxy matrix. The poly(propylene glycol)‐block‐poly(ethylene glycol)‐block‐poly(propylene glycol) (PPG‐b‐PEG‐b‐PPG) triblock copolymers used had two different molecular masses: 3300 and 2000 g mol?1. The mass concentration of PEG in the copolymer structure played a key role in the miscibility and cure kinetics of the blend as well as in the thermal–mechanical properties. Phase separation was observed only for blends formed with the 3300 g mol?1 triblock copolymer at 20 wt%. Concerning thermal properties, the miscibility of the copolymer in the epoxy matrix reduced the Tg value by 13 °C, although a 62% increase in fracture toughness (KIC) was observed. After the addition of PPG‐b‐PEG‐b‐PPG with 3300 g mol?1 there was a reduction in the modulus of elasticity by 8% compared to the neat matrix; no significant changes were observed in Tg values for the immiscible system. The use of PPG‐b‐PEG‐b‐PPG with 2000 g mol?1 reduced the modulus of elasticity by approximately 47% and increased toughness (KIC) up to 43%. Finally, for the curing kinetics of all materials, the incorporation of the triblock copolymer PPG‐b‐PEG‐b‐PPG delayed the cure reaction of the DGEBA/DDM (DGEBA, diglycidyl ether of bisphenol A; DDM, Q3‐4,4′‐Diaminodiphenylmethane) system when there is miscibility and accelerated the cure reaction when it is immiscible. All experimental curing reactions could be fitted to the Kamal autocatalytic model presenting an excellent agreement with experimental data. This model was able to capture some interesting features of the addition of triblock copolymers in an epoxy resin. © 2018 Society of Chemical Industry  相似文献   

13.
A series of polyurethane resins with varying NCO/OH ratios (0.8–2.0) has been synthesized from the monoglyceride of Mesua Ferrea L. seed oil, poly(ethylene glycol) (Mn, 200 g mol?1) and 2,4‐toluene diisocyanate in the presence of dibutyl tin dilaurate as the catalyst. The effects of the NCO/OH ratios of the synthesized resins on the physical properties, such as hydroxy values, acid values, saponification values, iodine values, specific gravities and isocyanate values have been studied. The formation of the polyurethane resins was confirmed by viscosity measurements, and FTIR, UV and 1H NMR spectroscopic studies. Performance characteristics, such as impact resistance, flexibility, gloss, hardness, adhesive strength and chemical resistance, of the cured resins were investigated as a function of the varying NCO/OH ratios, with an influence of these ratios being observed for most of the above properties. Thermogravimetric analysis (TGA) demonstrated that the thermal stabilities of the cured resins increased with an increase in the NCO/OH ratios. The amounts of char residues at 550 °C were also found to be greater for higher NCO/OH ratios of the oil‐modified polyurethane resins. Copyright © 2005 Society of Chemical Industry  相似文献   

14.
Thermal and mechanical properties of polyurethane (PU) sheets pre-pared from the glucose/fructose/sucrose–polyethylene glycol (PEG)–diphenylmethane diisocyanate (MDI) system were examined by differential scanning calorimetry, thermogravimetry, dynamic mechanical analysis and tensile tests. The saccharide content was varied at a constant NCO: OH ratio of 1·0. The glass transition temperature (Tg) increased with increasing saccharide content. The incorporation of saccharides into the PU structure results in a higher crosslinking density and a higher content of hard segments. The thermal decomposition was dependent on the saccharide content, an increase leading to a lower thermal decomposition temperature (Td). The dissociation of saccharide OH groups and NCO groups is a major part of the thermal decomposition of these PUs. Dynamic mechanical analysis revealed two kinds of relaxation: the high temperature relaxation corresponds to main chain motion and the other is a local mode relaxation due to non-reacted isocyanate groups. The tensile stress and Young’s modulus increased with the saccharide content. © of SCI.  相似文献   

15.
Polyethylene‐b‐poly (ethylene glycol) (PE‐b‐PEG) was successfully synthesized by a coupling reaction of hydroxyl‐terminated polyethylene (PE‐OH) and isocyanate‐terminated poly (ethylene glycol) (PEG‐NCO). PE‐OH was prepared by coordination chain transfer polymerization (CCTP) using 2,6‐bis[1‐(2,6‐diisopropylphenyl)imino ethyl] pyridine iron (II) dichloride /dry ethylaluminoxane (DEAO) /diethyl zinc (ZnEt2) as catalyst and subsequent in situ oxidation with oxygen. The active centers of this catalyst system were counted, indicating that the active centers were more stable using DEAO as cocatalyst than using dry methylaluminoxane (DMAO) as cocatalyst. PEG‐NCO was synthesized through the condensation reaction of monomethylpoly(ethylene glycol) (PEG) with isophoronediisocyanate (IPDI). Subsequently, the thermal characterization, morphological characterization and the application of these diblock copolymers was investigated. The results indicated that the diblock copolymers were effective compatilizers for polyethylene/poly(ethylene glycol) blends. Meanwhile, they were excellent surface modification agents for polyethylene membrane and glass sheet, it can efficiently turn a hydrophobic surface into a hydrophilic surface, or vice versa. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42236.  相似文献   

16.
用异佛尔酮二异氰酸酯(IPDI)、聚丙二醇(PPG)和二羟甲丙酸(DMPA)合成了水性聚氨酯分散体(WPU),讨论了PPG摩尔质量,NCO/OH及PPG/DMPA比例对WPU乳液和涂膜性能的影响。以WPU为种子与甲基丙烯酸甲酯进行乳液聚合制备杂化乳液,研究了不同PU/PMMA物质的量比例对杂化乳液及涂膜性能的影响,并采用TEM对WPU及杂化乳液粒子进行了表征。结果表明,在以PPG1000为原料,NCO与OH物质的量比为1.4∶1,PPG与DMPA物质的量比为1∶0.8条件下制备的WPU杂化乳液,随着PMMA比例增加,杂化乳液的稳定性和成膜性变差,聚合物膜断裂伸长率降低,但铅笔硬度、耐水性及耐乙醇性均得到了改善。  相似文献   

17.
An enzymatic oxidative polymerization of phenols was investigated in the presence of poly(ethylene glycol) (PEG)-poly(propylene glycol) (PPG)-poly(ethylene glycol) (PEG) triblock copolymer (Pluronic) in water. The formation of micellar aggregate of phenol and Pluronic by hydrogen bonding interaction in an aqueous solution was verified by DLS measurement. The PEG content of Pluronic greatly affected the polymerization behaviors. Using Pluronic with high PEG content improved the regioselectivity of the polymerization of phenol to give the polymer mainly consisting of phenylene unit. The polymerization in the presence of Pluronic F68 (EG76-PG29-EG76) produced the phenolic polymer with ultrahigh molecular weight (Mw > 106). From other phenols, high molecular weight polymers were also obtained. In addition, the FT-IR, DSC, and XRD analyses exhibited the formation of miscible complex between the phenolic polymer and Pluronic by hydrogen bonding interaction.  相似文献   

18.
Biodegradable and photocurable multiblock copolymers of various compositions were synthesized by the high‐temperature solution polycondensation of poly(ε‐caprolactone) (PCL) diols of molecular weight (Mn) = 3000 and poly(ethylene glycol)s (PEG) of Mn = 3000 with a dichloride of 5‐cinnamoyloxyisophthalic acid (ICA) as a chain extender, followed by irradiation by a 400 W high‐pressure mercury lamp (λ > 280 nm) to form a network structure. The gel contents increased with photocuring time, reaching a level of over 90% after 10 min for all copolymers without a photoinitiator. The thermal and mechanical properties of the photocured copolymers were examined by DSC and tensile tests. In cyclic thermomechanical tensile tests, the photocured ICA/PCL/PEG copolymer films showed good shape‐memory properties at 37–60°C, with both shape fixity ratio and shape recovery ratio over 90% at a maximum tensile strain of 100–300%. The water absorption of these copolymers and their rate of degradation in a phosphate buffer solution (pH 7.0) at 37°C increased significantly with increasing PEG content. The novel photocured ICA/PCL/PEG multiblock copolymers are potentially useful in biomedical applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
郭姝  邹涛  赵瑾  王博  陈宇迪 《中国塑料》2018,32(3):44-50
采用熔融共混法用聚乙二醇(PEG)对生物可降解材料聚乳酸(PLA)进行改性,研究了PEG的相对分子质量对共混体系热性能和力学性能的影响,对比了相同相对分子质量的PEG和聚丙二醇(PPG)由分子结构差异对共混体系性能的影响。结果表明,PEG的相对分子质量为2 000时,改性效果最好;相同相对分子质量的PEG改性效果优于PPG。  相似文献   

20.
Waterborne cationic fluorinated polyurethane (WCFPU) micro-emulsion was prepared by the reaction of isophorone diisocyanate (IPDI), polytetramethyleneether glycol (PTMG1000), 1,4-butanediol (BDO), N-methyldiethanolamine (MDEA), trimethylolpropane (TMP) and perfluoroalkylethyl octanol (FEOH), and then the films of the WCFPU were prepared. The influence on the mechanical properties and water absorption of the films, such as the molar ratio of NCO to OH, the dosage of MDEA, TMP and FEOH, was investigated. Their structure, morphology and heat performance were characterized by fourier transform infared spectrometer (FT-IR), dynamic light scattering (DLS), transmission electron microscope (TEM), X-ray diffraction (XRD), differential scanning calorimeter (DSC) and thermogravimetry (TG). The results revealed that the best mechanical properties and water resistance could be obtained under the condition that NCO/OH molar ratio was 1.25, w(TMP) was 1.1%, w(MDEA) was 7.29% and w(FEOH) was 22.3%. In addition, WCFPU was endowed with low surface energy of its film and the membrane surfaces had excellent water and oil repellency. Furthermore, the thermal stability of the waterborne cationic fluorinated polyurethane increased with the incorporation of perfluoroalkyl chain. And XRD, DSC and TG showed that micro-crystallinity of polyurethane increased with the increase of FEOH, which was benefit to the micro-phase seperation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号