首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
董浩  叶建东  王秀鹏 《功能材料》2006,37(11):1805-1807,1811
磷酸钙骨水泥组织工程支架材料具有良好的生物相容性和骨传导性,是一种良好的骨组织工程支架材料,但是这种材料存在力学性能差的缺点,限制了它的应用.本文采用生物相容性良好的可降解明胶材料与磷酸钙骨水泥支架进行复合,制备出的明胶/磷酸钙骨水泥复合支架材料,其压缩强度可达3.7MPa,比复合前磷酸钙支架材料的强度提高了37倍,而且材料具有良好的柔韧性,适合用作为非承重部位骨组织缺损修复用组织工程支架材料.  相似文献   

2.
采用向孔隙中灌注含聚乳酸聚乙醇酸共聚物(PLGA)载药微球的明胶溶液的方法制备了具有药物缓释功能的明胶/磷酸钙骨水泥复合组织工程支架。用扫描电子显微镜观察了微球和支架的形貌特征,用万能材料试验机测定了支架材料的抗压强度,用紫外-可见分光光度计分析了复合支架的释药率。结果表明,灌注明胶对多孔磷酸钙骨水泥支架起到显著的增强作用,抗压强度达2.42 MPa。复合支架携载硫酸庆大霉素, 具有良好的药物缓释功能,缓释时间可达30天以上,使支架在修复骨缺损的同时能消除炎症反应,成为一种集骨修复和治疗于一体的新型组织工程支架材料,具有良好的应用前景。   相似文献   

3.
利用棒状谷氨酸钠晶体作为造孔粒子,采用可溶盐造孔法,制备了三维连通的大孔径多孔磷酸钙骨水泥支架,分别将明胶(Gelatin) 、聚乳酸2羟基乙酸共聚物(PLGA) 、聚乳酸(PLA) 、聚己内酯(PCL) 、聚羟基丁酸戊酸酯(PHBV)灌注到多孔磷酸钙骨水泥(CPC)支架的孔隙中以改善支架材料的力学性能。结果表明,5 种高分子材料与水的接触角大小顺序为PHBV > PCL > PLA > PL GA > Gelatin , 复合支架材料的强度随高分子材料与水接触角的减小而增大;除PHBV外,其余4种均有明显的增强效果,其中Gelatin/CPC复合支架增强效果最好,强度达到2. 25 MPa±0. 02 MPa ,是CPC支架强度的25倍。经过增强的大孔径多孔磷酸钙骨水泥复合支架可用作骨组织工程支架材料。   相似文献   

4.
磷酸钙/纤维蛋白胶复合支架材料的结构及力学性能分析   总被引:17,自引:0,他引:17  
用可吸收磷酸钙骨水泥和纤维蛋白胶按一定比例体外构建复合支架材料,通过XRD、SEM、抗压实验和空隙率测试等方法对其结构及力学性能进行分析.结果发现:由于加入纤维蛋白胶,复合支架材料在一定程度上延长了磷酸钙骨水泥的初凝时间,但并不影响磷酸钙骨水泥的终凝时间;同时,加入纤维蛋白胶改变了骨水泥固化体的微观结构,提高了骨水泥的抗压强度,其最大抗压强度达到14MPa,弹性模量在96.64~269.39MPa之间,空隙率为38.8%.与在同样条件下制备的磷酸钙骨水泥比较,复合支架材料的抗压强度增强了55.6%,而空隙率仅仅下降了6.9%;XRD分析显示,复合支架材料并不影响磷酸钙骨水泥的最终的转化,其结晶结构仍是羟基磷灰石结构,是更好的骨组织工程支架材料.  相似文献   

5.
制备了一种新型磷酸氢钙-部分结晶磷酸钙-磷酸四钙三元体系骨水泥,采用正交试验优化骨水泥组分以提高材料的性能。通过力学性能测试、X射线衍射分析、扫描电镜观察以及反应过程水化放热测定,对比研究了所制备的三元体系骨水泥材料的水化过程和物相组成。结果表明所添加活性磷酸四钙参与水化反应较慢,延长了骨水泥的凝结时间,拓展了后期水化效应,使得反应后期水化进程得以延续,硬化体更加密实,孔隙率降低,抗压强度增加50%;同时反应放热峰值显著降低40%,水化过程总放热量基本不变,有利于骨水泥在临床应用。  相似文献   

6.
采用生理盐水浸泡与肌肉埋植的方法分别研究了可降解纤维/磷酸钙复合骨水泥的体外力学性能、体内降解性能以及相组成、微结构随浸泡(或植入)时间的变化规律。浸泡结果表明:浸泡初期,纤维的加入一定程度上降低了复合骨水泥的抗压强度,但大大改善了其断裂韧性,而且抗弯强度略有增加;浸泡后期,复合骨水泥的抗压强度、抗弯强度、断裂功均明显下降。体内降解结果表明,随着植入时间延长,含纤维复合骨水泥的降解速率及其增加幅度均高于未掺纤维骨水泥。类生理环境下含纤维复合骨水泥力学性能、降解性能的变化与纤维的降解、材料微观结构的变化密切相关。   相似文献   

7.
Magnesium calcium phosphate biocement (MCPB) with rapid-setting characteristics was fabricated by using the mixed powders of magnesium oxide (MgO) and calcium dihydrogen phosphate (Ca(H2PO4)2·H2O). The results revealed that the MCPB hardened after mixing the powders with water for about 7 min, and the compressive strength reached 43 MPa after setting for 1 h, indicating that the MCPB had a short setting time and high initial mechanical strength. After the acid–base reaction of MCPB containing MgO and Ca(H2PO4)2·H2O in a molar ratio of 2 : 1, the final hydrated products were Mg3(PO4)2 and Ca3(PO4)2. The MCPB was degradable in Tris–HCl solution and the degradation ratio was obviously higher than calcium phosphate biocement (CPB) because of its fast dissolution. The attachment and proliferation of the MG63 cells on the MCPB were significantly enhanced in comparison with CPB, and the alkaline phosphatase activity of MG63 cells on the MCPB was significantly higher than on the CPB at 7 and 14 days. The MG63 cells with normal phenotype spread well on the MCPB surfaces, and were attached in close proximity to the substrate, as seen by scanning electron microscopy (SEM). The results demonstrated that the MCPB had a good ability to support cell attachment, proliferation and differentiation, and exhibited good cytocompatibility.  相似文献   

8.
This work aims to modify the surface of a poly(lactic acid) (PLA) porous scaffold with calcium phosphate (CaP) via a simple solution-based technique, and to evaluate the effects of this modification on the responses of rat bone marrow mesenchymal stem cells (rBMMSCs). Under appropriate modification conditions involving stepwise-treatments in the Ca-and-P supersaturated solution under gentle agitation, a thin, poorly crystallized CaP layer was deposited. The BMMSCs derived from adult rats were shown to adhere quite well to the CaP-coated scaffold, and to proliferate actively with culturing time, although some down-regulation was noted with regard to the unmodified PLA scaffold. The osteogenic differentiation of rBMMSCs was significantly higher on the CaP-modified scaffold than on the unmodified scaffold, as confirmed by alkaline phosphatase (ALP) activity. Moreover, the expression of genes associated with bone, including collagen type I, osteopontin and bone sialoprotein, was stimulated better on the CaP-modified PLA scaffold. Based on these results, the currently used CaP-treatment was deemed effective in stimulating the osteogenic development of rBMMSCs on the PLA-based scaffold, and the CaP-treated PLA scaffold may be useful for future bone tissue engineering.  相似文献   

9.
将纳米羟基磷灰石,硅橡胶复合材料浸泡于模拟体液(SBF)中仿生合成了磷酸钙,利用IR、XRD、ICP和SEM等测试手段对表面沉积物进行表征.结果表明:在模拟体液中浸泡后,复合材料表面形成了分布均匀的以羟基磷灰石为主要成分的晶粒,表面羟基磷灰石的比例得到提高,生物学性能得以进一步改善;表明纳米羟基磷灰石,硅橡胶复合材料是一种生物活性材料.  相似文献   

10.
本研究采用球磨对磷酸钙骨水泥(CPC)起始粉末进行机械活化处理, 以期改善CPC力学性能, 并探讨了其影响机理。采用激光粒度仪、比表面积测量仪和X射线衍射仪(XRD)表征球磨后的CPC粉末(Ball milling CPC, BCPC)。利用发泡法制备多孔BCPC支架, 采用万能力学试验机、XRD和扫描电子显微镜(SEM)表征多孔BCPC支架。结果显示, 球磨后的BCPC粉末平均粒径减小, 比表面积增大, 表观密度、堆积密度及紧密密度减小。BCPC支架孔隙率为(77.98 ± 0.58)%, 抗压强度为(4.11 ± 0.46) MPa, 相比CPC支架的(64.23 ± 2.32)%和(1.99 ± 0.43) MPa有显著提高。SEM结果显示BCPC支架具有数微米和数百微米的两种孔隙结构。XRD结果表明机械活化作用降低了DCPD、α-TCP、CaCO3和HA的晶粒尺寸和结晶度, 促使DCPD向DCPA转化, 促进了各相磷酸钙盐的水化和HA的沉积, 提高了BCPC支架的力学性能, 为增强CaP基多孔材料的力学性能和扩展其临床应用提供了新途径。  相似文献   

11.
The synthetic bone graft substitutes currently used clinically are osteoconductive but not osteoinductive; their low success rate is thus their biggest disadvantage. The use of biomass raw materials for synthesizing calcium phosphate has gradually attracted increased research attention. In this study, hydroxyapatite powder was prepared through liquid-phase precipitation from eggshell, and porous biphasic calcium phosphate granules (EBGs) were then obtained using a pore former and sintering procedure. The EBGs were discovered to have high biocompatibility and no cytotoxicity. The results of animal experiments showed that the area of new bone growth was high, numerous Haversian canals could be observed, and almost all EBGs were surrounded by new bone tissue, which proved that the EBGs had excellent osteoinductivity. By contrast, numerous fat cells were found in the femoral defect area when a commercial bone graft was employed. Various biological inorganic ions (Mg, Sr, Na, and Fe) originally in the eggshell raw materials were incorporated into the EBGs, and the EBGs exhibited excellent osteogenic abilities. The developed approach provides an economical and feasible solution for the treatment of bone defects.  相似文献   

12.
本文提供了一种制备磷酸三钙/海藻酸钙(TCP/CA)复合平板膜的方法,以提高CA水凝胶的强度,并使其力学性能容易测试。在水溶液中将TCP与海藻酸钠复合,制备了TCP/CA复合平板膜,采用红外光谱和扫描电子显微镜对其进行表征,研究了不同TCP含量的TCP/CA复合平板膜的溶胀性能与复合平板膜在湿态和干态下的力学性能。结果表明:随着TCP含量的增加,TCP/CA复合平板膜在生理盐水中的溶胀率逐渐降低;TCP/CA复合平板膜在干态和湿态下的极限应力值均随着TCP含量的增加呈现先增加后减小的趋势;干态下的极限应力、模量和断裂能要明显大于湿态下的。该TCP/CA复合平板膜制备方法简单、厚度可控、易批量生产,在控制释放和组织工程领域有潜在的应用前景。  相似文献   

13.
R. Emadi 《Materials Letters》2010,64(8):993-139
In this study, a novel method was used to synthesize ß-TCP/HAP biphasic ceramic scaffold from natural cancellous bone. Bovine bone was calcined to remove the organic content. The remaining material was then soaked in P2O5 solution for different periods. P ions were doped into cancellous bone and reacted with hydroxyapatite (HAP) to produce ß-tricalcium phosphate (ß-TCP) at room temperature without any subsequent high-temperature heat treatment. By increasing the soaking time, the crystalline phase composition of the calcined bone gradually changed from HAP into a HAP/ß-TCP biphasic structure with different HAP/TCP ratios. The crystallite size of HAP and ß-TCP was smaller than 100 nm.  相似文献   

14.
Multipotent human mesenchymal stromal cells (hMSCs) are currently the most promising cell type for regenerative medicine and tissue engineering. For clinical applications with special focus on fracture repair a method to deliver in vitro‐expanded bone marrow cells to the fracture site is presented. Autologous blood plasma clotting was used to fix expanded cells and synthetic tricalcium phosphate particles. A jelly‐like but solid composite matrix was obtained which could easily be handled by the surgeon. The majority of embedded cells remained viable after the plasma gelation process, as was determined by fluorescence microscopy. Experimental cell culture over a period of 15 days showed proliferating mesenchymal stromal cells within the plasma clot.  相似文献   

15.
Abstract

In this study, in order to control zinc (Zn)-release from calcium phosphate (CaP), the crystalline forms of CaP-containing Zn were modified by wet ball milling and/or heat treatment. The CaP (CaO:CaHPO4:ZnO?=?7:20:3, molar ratio) was ground in a ball mill with the addition of purified water, and the ground products were heated to 400?°C and 800?°C. The physicochemical properties of these ground products were measured by powder X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy and energy-dispersive X-ray spectroscopy. Zn release characteristics from the samples were evaluated using a dissolution tester. The results of XRD and IR suggested that the structures of the starting materials were destroyed after 2.5?h of grinding, and new apatite-like amorphous solid containing Zn was generated. The Zn-release from the ground products was markedly suppressed after 2.5?h of grinding.  相似文献   

16.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号