首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drawing, winding, and pressing techniques were used to produce horizontally aligned carbon nanotube (CNT) sheets from free-standing vertically aligned CNT arrays. The aligned CNT sheets were used to develop aligned CNT/epoxy composites through hot-melt prepreg processing with a vacuum-assisted system. Effects of CNT diameter change on the mechanical properties of aligned CNT sheets and their composites were examined. The reduction of the CNT diameter considerably increased the mechanical properties of the aligned CNT sheets and their composites. The decrease of the CNT diameter along with pressing CNT sheets drastically enhanced the mechanical properties of the CNT sheets and CNT/epoxy composites. Raman spectra measurements showed improvement of the CNT alignment in the pressed CNT/epoxy composites. Research results suggest that aligned CNT/epoxy composites with high strength and stiffness are producible using aligned CNT sheets with smaller-diameter CNTs.  相似文献   

2.
Conventional micro-fiber-reinforced composites provide insight into critical structural features needed for obtaining maximum composite strength and stiffness: the reinforcements should be long, well aligned in a unidirectional orientation, and should have a high reinforcement volume fraction. It has long been a challenge for researchers to process CNT composites with such structural features. Here we report a method to quickly produce macroscopic CNT composites with a high volume fraction of millimeter long, well aligned CNTs. Specifically, we use the novel method, shear pressing, to process tall, vertically aligned CNT arrays into dense aligned CNT preforms, which are subsequently processed into composites. Alignment was confirmed through SEM analysis while a CNT volume fraction in the composites was calculated to be 27%, based on thermogravimetric analysis data. Tensile testing of the preforms and composites showed promising mechanical properties with tensile strengths reaching 400 MPa.  相似文献   

3.
The present work studied the combination effect of physical drying with chemical modification of carbon nanotubes (CNTs) on some through-thickness properties of carbon fiber/epoxy composites. Different drying methods of heat drying and freeze drying were utilized to affect CNT organization form in carbon fiber/CNTs preforms and composites: The adoption of heat-drying method made CNTs more inclined to form aggregates accompanied with randomly scattered CNTs, while continuous CNT networks could always be assembled when freeze drying method was employed. The formation mechanism of such CNT networks was discussed, and could be described as “freeze drying within confined space.” Chemical characteristic of CNTs was controlled by choosing different solutions of non-functionalized CNTs (NOCNTs) or hydroxyl-modified CNTs (OHCNTs). As a consequence, CNT networks modified composites, especially that with OHCNTs formed networks, displayed significantly better electrical performance than composites with CNT aggregates and scattered CNTs; NOCNT networks and scattered OHCNTs made the corresponding composites possess higher interlaminar shear strength (ILSS) value, whereas OHCNT networks impaired ILSS while enhancing flexural strength and modulus of composites.  相似文献   

4.
Applications of carbon nanotubes (CNTs) like field emission displays, super-capacitors, and cell growth scaffolds can benefit from controllable embedding of the CNTs in a material such that the CNTs are anchored and protrude a desired length. We demonstrate a simple method for anchoring densely packed, vertically aligned arrays of CNTs into silicone layers using spin-coating, CNT insertion, curing, and growth substrate removal. CNT arrays of 51 and 120?μm in height are anchored into silicone layers of thickness 26 and 36?μm, respectively. Scanning electron microscopy (SEM) and optical microscopy are used to characterize the sample morphology, a 5.5?m?s(-1) impinging water jet is used to apply shear stress, and a tensile test shows that the silicone layer detaches from the substrate before the CNTs are ripped from the layer. The CNTs are thus well anchored in the silicone layers. The spin-coating process gives control over layer thickness, and the method should have general applicability to various nanostructures and anchoring materials.  相似文献   

5.
Three-dimensional reinforcement of woven advanced polymer–matrix composites using aligned carbon nanotubes (CNTs) is explored experimentally and theoretically. Radially-aligned CNTs grown in situ on the surface of fibers in a woven cloth provide significant three-dimensional reinforcement, as measured by Mode I interlaminar fracture testing and tension-bearing experiments. Aligned CNTs bridge the ply interfaces giving enhancement in both initiation and steady-state toughness, improving the already tough system by 76% in steady state (more than 1.5 kJ/m2 increase). CNT pull-out on the crack faces is the observed toughening mechanism, and an analytical model is correlated to the experimental fracture data. In the plane of the laminate, aligned CNTs enhance the tension-bearing response with increases of: 19% in bearing stiffness, 9% in critical strength, and 5% in ultimate strength accompanied by a clear change in failure mode from shear-out failure (matrix dominated) without CNTs to tensile fracture (fiber dominated) with CNTs.  相似文献   

6.
A solid-state drawing and winding process was done to create thin aligned carbon nanotube (CNT) sheets from CNT arrays. However, waviness and poor packing of CNTs in the sheets are two main weaknesses restricting their reinforcing efficiency in composites. This report proposes a simple press-drawing technique to reduce wavy CNTs and to enhance dense packing of CNTs in the sheets. Non-pressed and pressed CNT/epoxy composites were developed using prepreg processing with a vacuum-assisted system. Effects of pressing on the mechanical properties of the aligned CNT sheets and CNT/epoxy composites were examined. Pressing with distributed loads of 147, 221, and 294 N/m showed a substantial increase in the tensile strength and the elastic modulus of the aligned CNT sheets and their composites. The CNT sheets under a press load of 221 N/m exhibited the best mechanical properties found in this study. With a press load of 221 N/m, the pressed CNT sheet and its composite, respectively, enhanced the tensile strength by 139.1 and 141.9%, and the elastic modulus by 489 and 77.6% when compared with non-pressed ones. The pressed CNT/epoxy composites achieved high tensile strength (526.2 MPa) and elastic modulus (100.2 GPa). Results show that press-drawing is an important step to produce superior CNT sheets for development of high-performance CNT composites.  相似文献   

7.
以浮动催化化学气相沉积法(FCCVD)碳纳米管(CNT)膜为原料,通过氰基树脂溶液浸渍法制备CNT预浸膜,然后采用热辅助牵伸和热压固化的方法制备高取向CNT膜复合材料。详细分析了热处理的温度和树脂溶液浓度对CNT预浸膜拉伸性能的影响,从而得到合适的热辅助牵伸工艺,并考察固化工艺对复合材料性能的影响。在此基础上,从浸润特性、CNT取向程度和层间剪切性能方面揭示CNT膜复合材料力学性能的强化机制。结果表明与传统CNT膜牵伸工艺相比,CNT预浸膜热牵伸工艺更有利于制备高取向CNT膜复合材料。热牵伸的温度和树脂溶液的浓度是制备高取向、低孔隙CNT预浸膜的关键因素。通过固化工艺的改变可有效调控氰基树脂的反应程度碳纳米管薄膜/氰基树脂复合材料的拉伸性能。经高温后固化处理后,CNT膜/氰基树脂复合材料的拉伸强度和模量分别高达2 748 MPa和302GPa。优异的树脂浸润特性、层间剪切强度以及高的CNT取向度使CNT膜复合材料中CNT更有利于协同承载,从而提高其力学性能。  相似文献   

8.
An effective carbon fiber/graphene oxide/carbon nanotubes (CF-GO-CNTs) multiscale reinforcement was prepared by co-grafting carbon nanotubes (CNTs) and graphene oxide (GO) onto the carbon fiber surface. The effects of surface modification on the properties of carbon fiber (CF) and the resulting composites was investigated systematically. The GO and CNTs were chemically grafted on the carbon fiber surface as a uniform coating, which could significantly increase the polar functional groups and surface energy of carbon fiber. In addition, the GO and CNTs co-grafted on the carbon fiber surface could improve interlaminar shear strength of the resulting composites by 48.12% and the interfacial shear strength of the resulting composites by 83.39%. The presence of GO and CNTs could significantly enhance both the area and wettability of fiber surface, leading to great increase in the mechanical properties of GO/CNTs/carbon fiber reinforced composites.  相似文献   

9.
Shearing the carbon nanotubes (CNTs) to desired size or trimming the CNT tips conveniently is usually necessary for many applications. CNTs are normally believed possessing very high strength and toughness. In this paper we present a simple and novel method to actualize this process. In this method, aligned CNT arrays were embedded in paraffin matrix, and then the materials were carefully sliced up along the direction normal to the CNTs with a microtome. These slices consisted of vertically aligned CNTs with desired and uniform length. The experiments proved that there were enough interaction forces between the CNTs and the paraffin matrix to prevent the CNTs from being pulled out during the machining process. These sheared CNTs have shown better performance for thermal interface materials and field emission applications. This process may redound to unlocking the great potential of CNT applications.  相似文献   

10.
An electrophoretic deposition process has been applied to produce unique carbon nanotube (CNT)/copper nanostructures on the carbon fiber surfaces. During the deposition process, ionized copper and positively charged CNTs are accelerated towards the carbon fiber under applied electric fields. An interconnected formicary-like network of nanotubes and nanoparticles is formed where copper nucleation and growth occurs predominantly at nanotube crossing and edge-contact locations. When embedded in a structural composite the CNT/copper structures create a highly conductive and strongly bonded network shown by significant enhancements in both electrical conductivity and interlaminar shear strength as compared to composites without the CNT/copper nanostructures.  相似文献   

11.
利用化学气相沉积(CVD)法在碳纤维(CF)表面生长碳纳米管(CNTs),制备了CF-CNTs多尺度增强体,增强体与环氧树脂(EP)结合得到CF-CNTs/EP复合材料。采用场发射扫描电镜(FESEM)、高分辨透射电镜(HRTEM)等方法研究了不同CVD工艺参数对CF-CNTs多尺度增强体的影响,并研究了不同CVD时间对CFCNTs/EP复合材料力学性能的影响。结果表明:沉积温度为500℃、沉积时间为10min、反应压力为0.02 MPa时,制备得到的多尺度增强体性能最好。CF-CNTs多尺度增强体较未生长CNTs的碳纤维与环氧树脂的浸润性明显提高。在CVD时间为10min时,所得CF-CNTs/EP复合材料的界面剪切强度(IFSS)最大可提高90.6%,层间剪切强度(ILSS)最大可提高24.4%。同时,在制备环氧树脂复合材料过程中碳纤维的不加捻与加捻相比,其ILSS提高了11.3%。  相似文献   

12.
利用电化学阳极氧化法改性碳纤维表面,开发了在连续碳纤维表面简单、高效、均匀地加载催化剂涂层的工艺。通过系统研究电化学改性强度对碳纤维表面物理与化学特性、催化剂颗粒与CNTs形貌、多尺度增强体拉伸强度及其增强复合材料层间剪切强度的影响,优化了碳纤维表面电化学改性工艺。结果表明:催化剂颗粒的形貌与分布不仅影响碳纤维表面沉积的CNTs的形貌,而且影响最终碳纤维表面生长CNTs多尺度增强体及其复合材料的力学性能。  相似文献   

13.
Abstract

A novel and effective method was devised for synthesizing a vertically aligned carbon nanotube (CNT) forest on a substrate using waste plastic obtained from commercially available water bottles. The advantages of the proposed method are the speed of processing and the use of waste as a raw material. A mechanism for the CNT growth was also proposed. The growth rate of the CNT forest was ~2.5 μm min?1. Transmission electron microscopy images indicated that the outer diameters of the CNTs were 20–30 nm on average. The intensity ratio of the G and D Raman bands was 1.27 for the vertically aligned CNT forest. The Raman spectrum showed that the wall graphitization of the CNTs, synthesized via the proposed method was slightly higher than that of commercially available multi-walled carbon nanotubes (MWCNTs). We expect that the proposed method can be easily adapted to the disposal of other refuse materials and applied to MWCNT production industries.  相似文献   

14.
Failure of composite laminates is often the result of “secondary” transverse stresses causing delamination. One well known approach to prevent such failure is to incorporate a distinct interleaf material into the interlaminar region in order to increase its fracture toughness and, consequently, its resistance to delamination. In the recent years various carbon nanotube (CNT) interleaves gained much attention. This work presents experimental study of the Mode I progressive fracture of carbon/epoxy composite laminates modified with high volume fraction, aligned, non-functionalized and functionalized CNT interleaves. The interleaves used here are thin solid sheets produced from vertically grown multiwalled CNT arrays by shear pressing method. A dry or resin infused sheet is integrated between prepreg plies prior to the laminate cure. The obtained results show that both dry and pre-infused CNT interleaves significantly, up to two times, increase the critical strain energy release rate of the baseline non-interleaved laminate. Two methods of functionalizing CNTs within the preform are explored: O2/CF4 plasma and H2SO4/KnO4 wet chemical treatments. Both methods maintain the high alignment and aspect ratio of the CNTs. Although, functionalization results in no additional GIC toughening compared to the non-functionalized interleaves, the characteristics of the fracture surfaces are dramatically different.  相似文献   

15.
Carbon nanotubes (CNT) in their various forms have great potential for use in the development of multifunctional multiscale laminated composites due to their unique geometry and properties. Recent advancements in the development of CNT hierarchical composites have mostly focused on multi-walled carbon nanotubes (MWCNT). In this work, single-walled carbon nanotubes (SWCNT) were used to develop nano-modified carbon fiber/epoxy laminates. A functionalization technique based on reduced SWCNT was employed to improve dispersion and epoxy resin-nanotube interaction. A commercial prepregging unit was then used to impregnate unidirectional carbon fiber tape with a modified epoxy system containing 0.1 wt% functionalized SWCNT. Impact and compression-after-impact (CAI) tests, Mode I interlaminar fracture toughness and Mode II interlaminar fracture toughness tests were performed on laminates with and without SWCNT. It was found that incorporation of 0.1 wt% of SWCNT resulted in a 5% reduction of the area of impact damage, a 3.5% increase in CAI strength, a 13% increase in Mode I fracture toughness, and 28% increase in Mode II interlaminar fracture toughness. A comparison between the results of this work and literature results on MWCNT-modified laminated composites suggests that SWCNT, at similar loadings, are more effective in enhancing the mechanical performance of traditional laminated composites.  相似文献   

16.
Abstract

This paper addresses the uncertainties associated with using carbon nanotubes (CNTs) as reinforcement for cement. These uncertainties emerge mainly from the CNTs’ wide range of mechanical properties and their interfacial behavior with cement. This study sheds light on the basis of choosing the optimal combinations of CNTs mechanical and interfacial parameters to improve the structural strength and ductility of CNT-reinforced cementitious composites. The finite element method (FEM) is employed to study the individual and interactive effects of five parameters, including interfacial shear (bond) strength, allowable slip, CNT Young’s modulus, residual bond stress and aspect ratio. Numerical results show that the parameters, at certain ranges of values, interact substantially and greatly alter the mechanical properties of the composite. It is also found that the governing parameter is the CNT Young’s modulus, which determines whether the composite is ductility critical or strength critical. Furthermore, the level of residual bond stress substantially influences the effect of other parameters, especially in the case of composite ductility.  相似文献   

17.
This study examined the mechanical properties of aligned multi-walled carbon nanotube (CNT)/epoxy composites processed using a hot-melt prepreg method. Vertically aligned ultra-long CNT arrays (forest) were synthesized using chemical vapor deposition, and were converted to horizontally aligned CNT sheets by pulling them out. An aligned CNT/epoxy prepreg was fabricated using hot-melting with B-stage cured epoxy resin film. The resin content in prepreg was well controlled. The prepreg sheets showed good drapability and tackiness. Composite film specimens of 24-33 μm thickness were produced, and tensile tests were conducted to evaluate the mechanical properties. The resultant composites exhibit higher Young’s modulus and tensile strength than those of composites produced using conventional CNT/epoxy mixing methods. For example, the maximum elastic modulus and ultimate tensile strength (UTS) of a CNT (21.4 vol.%)/epoxy composite were 50.6 GPa and 183 MPa. These values were, respectively, 19 and 2.9 times those of the epoxy resin.  相似文献   

18.
Continuous carbon nanotubes (CNT) fibers were directly spun from a vertically aligned CNT forest grown by a plasma-enhanced chemical vapor deposition (PECVD) process. The correlation of the CNT structure with Fe catalyst coarsening, reaction time, and the CNTs bundling phenomenon was investigated. We controlled the diameters and walls of the CNTs and minimized the amorphous carbon deposition on the CNTs for favorable bundling and spinning of the CNT fibers. The CNT fibers were fabricated with an as-grown vertically aligned CNT forest by a PECVD process using nanocatalyst an Al2O3 buffer layer, followed by a dry spinning process. Well-aligned CNT fibers were successfully manufactured using a dry spinning process and a surface tension-based densification process by ethanol. The mechanical properties were characterized for the CNT fibers spun from different lengths of a vertically aligned CNT forest. Highly oriented CNT fibers from the dry spinning process were characterized with high strength, high modulus, and high electrical as well as thermal conductivities for possible application as ultralight, highly strong structural materials. Examples of structural materials include space elevator cables, artificial muscle, and armor material, while multifunctional materials include E-textile, touch panels, biosensors, and super capacitors.  相似文献   

19.
In this paper, we report a method based on nanosphere lithography technology for the synthesis of nano-pitched vertically aligned multi-walled carbon nanotube array. A monolayer of polystyrene nanospheres with diameter of 650 nm was coated on silicon oxide layer to create hexagonally arranged patterns. A metal layer, which acted as a catalyst for carbon nanotube growth, was deposited on the patterns by e-beam evaporation method. Nano-sized metallic patterns were formed by removing the polystyrene nanospheres. Uniform CNT arrays with pitch of 800 nm were successfully synthesized from the metallic patterns by plasma enhanced chemical vapor deposition. Using nanosphere lithography, the pitch of the single CNT array can be well-controlled. Therefore, the as-grown CNTs have potential applications in advanced interconnects technology and other nano applications.  相似文献   

20.
Abstract

The present study introduces a process to grow micro-honeycomb (µ-HC) vertically aligned carbon nanotubes (VACNTs) using thermal chemical vapor deposition technique. Methane is used as a source of carbon and hydrogen gas as a reducing agent. Where, the fabricated µ-HC structure reported in literature involves complex synthesis process and requires a catalyst layer, the novelty of the process used here lies in the fact that no catalyst layer is used for the growth of CNT network, rather copper foil is used as a substrate. The in-situ cracking of CNTs due to water treatment leads to the formation of µ-HC CNT network, which is confirmed by Raman spectroscopy. Further scanning electron microscopy analysis shows that the length of developed µ-HC CNT is ~5?µm. Hexagonal µ-HC network shows more than 94% absorption in UV-Vis-NIR wavelength region. The designed process provides high-yield with a low-cost synthesis of vertically aligned CNTs having 3?D microarchitecture. The fabricated CNT network can be used as an electrode for supercapacitor, as an active layer in a photovoltaic cell and most of the energy harvesting devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号