首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In skin tissue engineering, a three-dimensional porous scaffold is necessary to support cell adhesion and proliferation and to guide cells moving into the repair area in the wound healing process. Structurally, the porous scaffold should have an open and interconnected porous architecture to facilitate homogenous cell distribution. Moreover, the scaffolds should be mechanically strong to protect deformation during the formation of new skin. In this study, the hybrid scaffolds were prepared by forming funnel-like collagen or gelatin sponge on a woven poly(l-lactic acid) (PLLA) mesh. The hybrid scaffolds combined the advantages of both collagen or gelatin (good cell-interactions) and PLLA mesh (high mechanical strength). The hybrid scaffolds were used to culture dermal fibroblasts for dermal tissue engineering. The funnel-like porous structure promoted homogeneous cell distribution and extracellular matrix production. The PLLA mesh reinforced the scaffold to avoid deformation. Subcutaneous implantation showed that the PLLA–collagen and PLLA–gelatin scaffolds promoted the regeneration of dermal tissue and epidermis and reduced contraction during the formation of new tissue. These results indicate that funnel-like hybrid scaffolds can be used for skin tissue regeneration.  相似文献   

2.
Chitosan–gelatin polyelectrolyte complexes were fabricated and evaluated as tissue engineering scaffolds for cartilage regeneration in vitro and in vivo. The crosslinker for the gelatin component was selected among glutaraldehyde, bisepoxy, and a water-soluble carbodiimide (WSC) based upon the proliferation of chondrocytes on the crosslinked gelatin. WSC was found to be the most suitable crosslinker. Complex scaffolds made from chitosan and gelatin with a component ratio equal to one possessed the proper degradation rate and mechanical stability in vitro. Chondrocytes were able to proliferate well and secrete abundant extracellular matrix in the chitosan–gelatin (1:1) complex scaffolds crosslinked by WSC (C1G1WSC) compared to the non-crosslinked scaffolds. Implantation of chondrocytes-seeded scaffolds in the defects of rabbit articular cartilage confirmed that C1G1WSC promoted the cartilage regeneration. The neotissue formed the histological feature of tide line and lacunae in 6.5 months. The amount of glycosaminoglycans in C1G1WSC constructs (0.187 ± 0.095 μg/mg tissue) harvested from the animals after 6.5 months was 14 wt.% of that in normal cartilage (1.329 ± 0.660 μg/mg tissue). The average compressive modulus of regenerated tissue at 6.5 months was about 0.539 MPa, which approached to that of normal cartilage (0.735 MPa), while that in the blank control (3.881 MPa) was much higher and typical for fibrous tissue. Type II collagen expression in C1G1WSC constructs was similarly intense as that in the normal hyaline cartilage. According to the above results, the use of C1G1WSC scaffolds may enhance the cartilage regeneration in vitro and in vivo.  相似文献   

3.
We report fabrication of three dimensional scaffolds with well interconnected matrix of high porosity using keratin, chitosan and gelatin for tissue engineering and other biomedical applications. Scaffolds were fabricated using porous Keratin–Gelatin (KG), Keratin–Chitosan (KC) composites. The morphology of both KG and KC was investigated using SEM. The scaffolds showed high porosity with interconnected pores in the range of 20–100 μm. They were further tested by FTIR, DSC, CD, tensile strength measurement, water uptake and swelling behavior. In vitro cell adhesion and cell proliferation tests were carried out to study the biocompatibility behavior and their application as an artificial skin substitute. Both KG and KC composite scaffolds showed similar properties and patterns for cell proliferation. Due to rapid degradation of gelatin in KG, we found that it has limited application as compared to KC scaffold. We conclude that KC scaffold owing to its slow degradation and antibacterial properties would be a better substrate for tissue engineering and other biomedical application.  相似文献   

4.
Cornea disease may lead to blindness and keratoplasty is considered as an effective treatment method. However, there is a severe shortage of donor corneas worldwide. This paper presents the crosslinked collagen (Col)–gelatin (Gel)–hyaluronic acid (HA) films developed by making use of 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) as the crosslinker. The test results on the physical and biological properties indicate that the CGH631 film (the mass ratio of Col:Gel:HA = 6:3:1) has appropriate optical performance, hydrophilicity and mechanical properties. The diffusion properties of the CGH631 film to NaCl and tryptophan are also satisfactory and the measured data are 2.43 × 10? 6 cm2/s and 7.97 × 10? 7 cm2/s, respectively. In addition, cell viability studies demonstrate that the CGH631 film has good biocompatibility, on which human corneal epithelial cells attached and proliferated well. This biocompatible film may have potential use in cornea tissue engineering.  相似文献   

5.
PLLA scaffolds were successfully fabricated using liquid–liquid phase separation with freeze extraction techniques. The effects of different processing conditions, such as method of cooling (direct quenching and pre-quenching), freezing temperature (−80°C and −196°C) and polymer concentration (3, 5 and 7 wt%) were investigated in relations to the scaffold morphology. SEM micrographs of scaffolds showed interconnected porous network with pore size ranging from 20 to 60 μm. The scaffolds had porosity values ranging from 80 to 90%. Changes to the interconnected network, porosity and pore size were observed when the method of cooling and polymer concentration was changed. Direct quenching to −80°C gave a more porous interconnected microstructure with uniform pore size compared to samples prepared using pre-quenching method. Larger pores were observed for samples quenched at −80°C compared to −196°C. Scaffolds prepared using direct quenching to −196°C had higher elastic modulus and compressive stress compared to those quenched to −80°C. The compressive elastic modulus ranged from 4 to 7 MPa and compressive stress at 10% strain was from 0.13 to 0.18 MPa.  相似文献   

6.
Pore architecture and its stable functionality under cell culturing of three dimensional (3D) scaffolds are of great importance for tissue engineering purposes. In this study, alginate was incorporated with collagen to fabricate collagen–alginate composite scaffolds with different collagen/alginate ratios by lyophilizing the respective composite gels formed via collagen fibrillogenesis in vitro and then chemically crosslinking. The effects of alginate amount and crosslinking treatment on pore architecture, swelling behavior, enzymatic degradation and tensile property of composite scaffolds were systematically investigated. The relevant results indicated that the present strategy was simple but efficient to fabricate highly interconnected strong biomimetic 3D scaffolds with nanofibrous surface. NIH3T3 cells were used as a model cell to evaluate the cytocompatibility, attachment to the nanofibrous surface and porous architectural stability in terms of cell proliferation and infiltration within the crosslinked scaffolds. Compared with the mechanically weakest crosslinked collagen sponges, the cell-cultured composite scaffolds presented a good porous architecture, thus permitting cell proliferation on the top surface as well as infiltration into the inner part of 3D composite scaffolds. These composite scaffolds with pore size ranging from 150 to 300 μm, over 90% porosity, tuned biodegradability and water-uptake capability are promising for tissue engineering applications.  相似文献   

7.
The presence of a hierarchical channel network in tissue engineering scaffold is essential to construct metabolically demanding liver tissue with thick and complex structures. In this research, chitosan–gelatin (C/G) scaffolds with fine three-dimensional channels were fabricated using indirect solid freeform fabrication and freeze-drying techniques. Fabrication processes were studied to create predesigned hierarchical channel network inside C/G scaffolds and achieve desired porous structure. Static in-vitro cell culture test showed that HepG2 cells attached on both micro-pores and micro-channels in C/G scaffolds successfully. HepG2 proliferated at much higher rates on C/G scaffolds with channel network, compared with those without channels. This approach demonstrated a promising way to engineer liver scaffolds with hierarchical channel network, and may lead to the development of thick and complex liver tissue equivalent in the future.  相似文献   

8.
Highly porous 45S5 Bioglass®-based foam scaffolds were coated with multi-walled carbon nanotubes (CNT) by electrophoretic deposition (EPD) technique. By placing the scaffolds in between the two electrodes of the EPD cell, a CNT coating of up to 1 μm thickness was achieved on the surface throughout the whole three dimensional (3D) matrix. A 0.5 wt% CNT aqueous suspension was used and EPD was carried out at 2.8 V for 10 mins. The compression strength of this CNT/Bioglass® composite was measured to be 0.70 MPa. Moreover the increased electrical conductivity of the composite with CNT coating was confirmed. The scaffolds have the potential for applications in bone tissue engineering due to the high bioactivity, nano-roughness in 3D and electrical conductivity provided by the addition of CNT.  相似文献   

9.
Highly porous calcium phosphate (CaP) scaffolds for bone-tissue engineering were fabricated by combining a robocasting process with a sol–gel synthesis that mixed Calcium Nitrate Tetrahydrate and Triethyl Phosphite precursors in an aqueous medium. The resulting gels were used to print scaffolds by robocasting without the use of binder to increase the viscosity of the paste. X-ray diffraction analysis confirmed that the process yielded hydroxyapatite and β-tricalcium phosphate biphasic composite powders. Thus, the scaffold composition after crystallization of the amorphous structure could be easily modified by varying the initial Ca/P ratio during synthesis. The compressive strengths of the scaffolds are ~6 MPa, which is in the range of human cancellous bone (2–12 MPa). These highly porous scaffolds (~73 vol% porosity) are composed of macro-pores of ~260 μm in size; such porosity is expected to enable bone ingrowth into the scaffold for bone repair applications. The chemistry, porosity, and surface topography of such scaffolds can also be modified by the process parameters to favor bone formation. The studied sol–gel process can be used to coat these scaffolds by dip-coating, which induces a significant enhancement of mechanical properties. This can adjust scaffold properties such as composition and surface morphology, which consequently may improve their performances.  相似文献   

10.
Nanoparticles (NPs) were prepared from succinylated gelatin (s-GL) cross-linked with aldehyde heparin (a-HEP) and used subsequently as a nano-template for the mineralization of hydroxyapatite (HAP). Gelatin was functionalized with succinyl groups that made it soluble at room temperature. Heparin was oxidized to generate aldehyde groups and then used as a cross-linker that can react with s-GL to form NPs via Schiff’s base linkage. The polymer concentrations, feed molar ratios and pH conditions were varied to fabricate NPs suspension. NPs were obtained with a spheroid shape of an average size of 196 nm at pH 2.5 and 202 nm at pH 7.4. These NPs had a positive zeta potential of 7.3 ± 3.0 mV and a narrow distribution with PDI 0.123 at pH 2.5, while they had a negative zeta potential of ?2.6 ± 0.3 mV and formed aggregates (PDI 0.257) at pH 7.4. The NPs prepared at pH 2.5 with a mean particle size of 196 nm were further used for mineralization studies. The mineralization process was mediated by solution without calcination at 37 °C. The HAP formed on NPs was analyzed by Fourier transform infrared spectroscopy and X-ray diffraction. HAP coated s-GL/a-HEP NPs developed in this study may be used in future as osteoinductive fillers enhancing the mechanical properties of injectable hydrogel or use as potential multifunctional device for nanotherapeutic approaches.  相似文献   

11.
One of the major factors in the therapeutic success of bone tissue engineered scaffolds is the ability of the construct to vascularise post implantation. One of the approaches for improving vascularisation within scaffolds has been to co-culture human umbilical vein endothelial cells (HUVECS) with human osteoblasts (HOBS), which may then promote vascularisation and facilitate tissue regeneration. However, in order to mimic a natural physiological niche it is vital that the scaffold is able to support and promote the proliferation of both cell types and thus become a viable tissue engineered construct. In this study we report the development of a porous bioactive glass–ceramic construct and examine the interaction with human umbilical vein endothelial cells (HUVEC’s) and human osteoblast-like cell both in mono and co-culture. The study clearly demonstrated that the scaffolds were able to support both endothelial and human osteoblast cell proliferation both in mono and co-culture. A comparison of the proliferation response of HUVEC and HOB in mono-culture on the test scaffolds and the commercial porous hydroxyapatite was assessed over a 28 day period (4, 7, 14, 21 and 28 days), using alamar BlueTM assay. Proliferation of HOB cells seeded in the scaffolds was consistently shown to be above those observed on commercial HA scaffolds.  相似文献   

12.
Recently, nano–macro dual-porous, three-dimensional (3D) glass structures were developed for use as bioscaffolds for hard tissue regeneration, but there have been concerns regarding the interconnectivity and homogeneity of nanopores in the scaffolds, as well as the cytotoxicity of the environment deep inside due to limited fluid access. Therefore, mercury porosimetry, nitrogen absorption, and TEM have been used to characterize nanopore network of the scaffolds. In parallel, viability of MG 63 human osteosarcoma cells seeded on scaffold surface was investigated by fluorescence, confocal and electron microscopy methods. The results show that cells attach, migrate and penetrate inside the glass scaffold with high proliferation and viability rate. Additionally, scaffolds were implanted under the skin of a male New Zealand rabbit for in vivo animal test. Initial observations show the formation of new tissue with blood vessels and collagen fibers deep inside the implanted scaffolds with no obvious inflammatory reaction. Thus, the new nano–macro dual-porous glass structure could be a promising bioscaffold for use in regenerative medicine and tissue engineering for bone regeneration.  相似文献   

13.
The physical properties of tissue engineering scaffolds such as microstructures play important roles in controlling cellular behaviors and neotissue formation. Among them, the pore size stands out as a key determinant factor. In the present study, we aimed to fabricate porous scaffolds with pre-defined hierarchical pore sizes, followed by examining cell growth in these scaffolds. This hierarchical porous microstructure was implemented via integrating different pore-generating methodologies, including salt leaching and thermal induced phase separation (TIPS). Specifically, large (L, 200–300 μm), medium (M, 40–50 μm) and small (S, < 10 μm) pores were able to be generated. As such, three kinds of porous scaffolds with a similar porosity of ~ 90% creating pores of either two (LS or MS) or three (LMS) different sizes were successfully prepared. The number fractions of different pores in these scaffolds were determined to confirm the hierarchical organization of pores. It was found that the interconnectivity varied due to the different pore structures. Besides, these scaffolds demonstrated similar compressive moduli under dry and hydrated states. The adhesion, proliferation, and spatial distribution of human fibroblasts within the scaffolds during a 14-day culture were evaluated with MTT assay and fluorescence microscopy. While all three scaffolds well supported the cell attachment and proliferation, the best cell spatial distribution inside scaffolds was achieved with LMS, implicating that such a controlled hierarchical microstructure would be advantageous in tissue engineering applications.  相似文献   

14.
Nanofibrous substrates of synthetic polymers including polycaprolactone (PCL) have shown considerable potential in tissue regeneration. This paper reports the use of PCL/collagen nanofibers to improve the in vitro osteoblastic responses for the applications in bone regeneration area. Collagen and PCL were dissolved in a co-solvent, and the resulting solution was electrospun into a nanofibrous web. Nonwoven fibrous matrices were successfully produced at various compositional ratios (PCL/collagen = 1/3, 1 and 3 by weight). Although the PCL nanofiber was hydrophobic, the presence of collagen significantly improved the water affinity, such as the water contact angle and water uptake capacity. Tensile mechanical tests showed that the collagen–PCL nanofiber had a significantly higher extension rate (approximately 2.8-fold) than the PCL while maintaining the maximum tensile load in a similar range. The osteoblastic cells cultured on the collagen–PCL nanofibrous substrate showed better initial adhesion and a higher level of growth than those cultured on the PCL nanofiber. Furthermore, real-time RT-PCR revealed the expression of a series of bone-associated genes, including osteopontin, collagen type I and alkaline phosphatase. The expression of these genes was significantly higher on the collagen–PCL nanofiber than on the PCL nanofiber. When subcutaneously implanted in mouse the collagen–PCL membrane facilitated tissue cells to well penetrate into the nanofibrous structure at day 7, whilst no such cell penetration was noticed in the pure PCL nanofiber. Overall, the presence of collagen within the PCL nanofiber improves the water affinity, tensile extension rate, and the tissue cell responses, such as initial adhesion, growth, penetration and the expression of bone-associated genes. Therefore, the collagen–PCL nanofibrous membrane may have potential applications in the cell growth and bone tissue regeneration.  相似文献   

15.
Porous titanium and titanium alloys are promising scaffolds for bone tissue engineering, since they have the potential to provide new bone tissue ingrowth abilities and low elastic modulus to match that of natural bone. In the present study, porous Ti–7.5Mo alloy scaffolds with various porosities from 30 to 75 % were successfully prepared through a space-holder sintering method. The yield strength and elastic modulus of a Ti–7.5Mo scaffold with a porosity of 50 % are 127 MPa and 4.2 GPa, respectively, being relatively comparable to the reported mechanical properties of natural bone. In addition, the porous Ti–7.5Mo alloy exhibited improved apatite-forming abilities after pretreatment (with NaOH or NaOH + water) and subsequent immersion in simulated body fluid (SBF) at 37 °C. After soaking in an SBF solution for 21 days, a dense apatite layer covered the inner and outer surfaces of the pretreated porous Ti–7.5Mo substrates, thereby providing favorable bioactive conditions for bone bonding and growth. The preliminary cell culturing result revealed that the porous Ti–7.5Mo alloy supported cell attachment.  相似文献   

16.
The aims of this study were to fabricate biopolymer and biocomposite scaffolds for bone tissue engineering by an air pressure-aided deposition system and to carry out osteoblast cell culture tests to validate the biocompatibility of fabricated scaffolds. A mPEG–PCL–mPEG triblock copolymer was synthesized as a biopolymer material. Biocomposite material was composed of synthesized biopolymer and hydroxyapatite (HA) with a mean diameter of 100 μm. The weight ratio of HA added to the synthesized biopolymer was 0.1, 0.25, 0.5 and 1. The experimental results show that the maximum average compressive strength of biocomposite scaffolds, made of weight ratio 0.5, with mean pore size of 410 μm (porosity 81%) is 18.38 MPa which is two times stronger than that of biopolymer scaffolds. Osteoblast cells, MC3T3-E1, were seeded on both types of fabricated scaffolds to validate the biocompatibility using methylthianzol tetrazolium (MTT) assay and cell morphology observation. After 28 days of in vitro culturing, the seeded osteoblasts were well distributed in the interior of both types of scaffolds. Furthermore, MTT experimental results show that the cell viability of the biocomposite scaffold is higher than that of the biopolymer scaffold. This indicates that adding HA into synthesized biopolymer can enhance compressive strength and the proliferation of the osteoblast cell.  相似文献   

17.
There is a significant interest in using synthetic polymers, such as polycaprolactone (PCL), in engineering skin to avoid the need for donor sites with autografts, immunological rejection issues with allograft and reproducibility issues with using natural polymers. PCL is promising as it is a US Food and Drug Administration—approved biodegradable polymer with good mechanical properties. However, its hydrophobic nature is not optimal for cellular interaction and biodegradation in skin tissue engineering. In this study, titanium oxide–PCL composite films were prepared using an in situ, one-step synthesis method. Titanium dioxide (TiO2) was introduced to improve the wetting properties of the hydrophobic polymer and so enhance the cell–material interactions and material biodegradation to be more suitable for skin regeneration. Results showed that the simple synthesis method produced nano- and submicron TiO2 particles well dispersed within the PCL matrix. Spin-coated composite films showed increasing hydrophilicity with increasing concentration of TiO2. Degradation of the composite films and pure PCL films were compared using gel permeation chromatography of the films after 14-day-immersion experiments. Molecular weights of PCL after immersion were found to steadily decrease by up to ~65 % with increasing concentration of TiO2. Rates of water penetration into the composite films were found to increase with the concentration of TiO2 and correlate with the molecular weight decreases observed. In vitro experiments with fibroblasts demonstrated enhanced cell adhesion and proliferation on the composite films. This synthesis method therefore provides a simple means of tuning the wetting properties of hydrophobic polymers to enhance their cellular interactions, as well as tuning their biodegradation properties to suit applications such as skin tissue engineering.  相似文献   

18.
A series of biodegradable composite scaffolds was fabricated from an aqueous solution of gelatin, carboxymethyl chitosan (CM-chitosan) and β-tricalcium phosphate (β-TCP) by radiation-induced crosslinking at ambient temperature. Ultrasonic treatment on the polymer solutions significantly influenced the distribution of β-TCP particles. An ultrasonic time of 20 min, followed by 30 kGy irradiation induced a crosslinked scaffold with homogeneous distribution of β-TCP particles, interconnected porous structure, sound swelling capacity and mechanical strength. Fourier Transform Infrared Spectroscopy and X-ray Diffraction analysis indicated that β-TCP successfully incorporated with the network of gelatin and CM-chitosan. In vivo implantation of the scaffold into the mandible of beagle dog revealed that the scaffolds had excellent biocompatibility and the presence of β-TCP can accelerate bone regeneration. The comprehensive results of this study paved way for the application of gelatin/CM-chitosan/β-TCP composite scaffolds as candidate of bone tissue engineering material.  相似文献   

19.
In this work hyaluronic acid (HA) functionalized with ethylenediamine (EDA) has been employed to graft α-elastin. In particular a HA-EDA derivative bearing 50 mol% of pendant amino groups has been successfully employed to produce the copolymer HA-EDA-g-α-elastin containing 32% w/w of protein. After grafting with α-elastin, remaining free amino groups reacted with ethylene glycol diglycidyl ether (EGDGE) for producing chemical hydrogels, proposed as scaffolds for tissue engineering. Swelling degree, resistance to chemical and enzymatic hydrolysis, as well as preliminary biological properties of HA-EDA-g-α-elastin/EGDGE scaffold have been evaluated and compared with a HA-EDA/EGDGE scaffold. The presence of α-elastin grafted to HA-EDA improves attachment, viability and proliferation of primary rat dermal fibroblasts and human umbilical artery smooth muscle cells. Biological performance of HA-EDA-g-α-elastin/EGDGE scaffold resulted comparable to that of a commercial collagen type I sponge (Antema®), chosen as a positive control.  相似文献   

20.
In this study, biodegradation and biocompatibility of novel poly(ε-caparolactone)/nano fluoridated hydroxyapatite (PCL–FHA) scaffolds were investigated. The FHA nanopowders were prepared via mechanical alloying method and had a chemical composition of Ca10 (PO4)6OH2–x F x (where x values were selected equal to 0.5 and 2.0). In order to fabricate PCL–FHA scaffolds, 10, 20, 30 and 40 wt% of the FHA were added to the PCL. The PCL–FHA scaffolds were produced by the solvent casting/particulate leaching using sodium chloride particles (with diameters of 300–500 μm) as the porogen. The phase structure, microstructure and morphology of the scaffolds were evaluated using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy techniques. Porosity of the scaffolds was measured using the Archimedes’ Principle. In vitro degradation of PCL–FHA scaffolds was studied by incubating the samples in phosphate buffered saline at 37°C and pH 7.4 for 30 days. Moreover, biocompatibility was evaluated by MTT assay after seeding and culture of osteoblast-like cells on the scaffolds. Results showed that the osteoblast-like cells attached to and proliferated on PCL–FHA and increasing the porosity of the scaffolds increased the cell viability. Also, degradation rate of scaffolds were increased with increasing the fluorine content in scaffolds composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号