首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

The superconducting transition temperature, Tc, in iron-based solids can be enhanced by applied pressure: Tc increases from 8 to 37 K for the 11-type FeSe when the pressure is raised from 0 to 4 GPa. High-pressure studies can elucidate the mechanism of superconductivity in such novel materials. In this paper, we present a high-pressure study of Fe(Se1?xTex) and Fe(Se1?xSx). In the case of Fe(Se1?xTex), the maximum Tc under high pressure did not exceed the Tc of FeSe, which can be attributed to the structural transition to the monoclinic phase. For Fe(Se1?xSx) (0 < x < 0.3), Tc exhibited a significant increase with pressure; however, the maximum Tc under high pressure did not exceed the Tc of FeSe. This may be due to the disorder induced by substituting S for Se, which is similar to the pressure effect on Tc for the 1111-type superconductor Ca(Fe1?xCox)AsF. The Tc of Fe(Se1?xSx) showed a complex behavior below 1 GPa, first decreasing and then increasing with increasing pressure. From high-pressure x-ray diffraction measurements, the Tc (P) curve was correlated with the local structural parameter.  相似文献   

2.
The superconducting transition temperature, Tc, in iron-based solids can be enhanced by applied pressure: Tc increases from 8 to 37 K for the 11-type FeSe when the pressure is raised from 0 to 4 GPa. High-pressure studies can elucidate the mechanism of superconductivity in such novel materials. In this paper, we present a high-pressure study of Fe(Se1−xTex) and Fe(Se1−xSx). In the case of Fe(Se1−xTex), the maximum Tc under high pressure did not exceed the Tc of FeSe, which can be attributed to the structural transition to the monoclinic phase. For Fe(Se1−xSx) (0 < x < 0.3), Tc exhibited a significant increase with pressure; however, the maximum Tc under high pressure did not exceed the Tc of FeSe. This may be due to the disorder induced by substituting S for Se, which is similar to the pressure effect on Tc for the 1111-type superconductor Ca(Fe1−xCox)AsF. The Tc of Fe(Se1−xSx) showed a complex behavior below 1 GPa, first decreasing and then increasing with increasing pressure. From high-pressure x-ray diffraction measurements, the Tc (P) curve was correlated with the local structural parameter.  相似文献   

3.
The performance improvement of conventional CdTe solar cells is mainly limited by doping concentration and minority carrier life time. Alloying CdTe with an isovalent element changes its properties, for example its band gap and behaviour of dopants, which has a significant impact on its performance as a solar cell absorber. In this work, the structural, optical, and electronic properties of CdTe1-xSex films are examined for different Se concentrations. The band gap of this compound changes with composition with a minimum of 1.40 eV for x = 0.3. We show that with increasing x, the lattice constant of CdTe1-xSex decreases, which can influence the solubility of dopants. We find that alloying CdTe with Se changes the effect of Cu doping on the p-type conductivity in CdTe1-xSex, reducing the achievable charge carrier concentration with increasing x. Using a front surface CdTe1-xSex layer, compositional, structural and electronic grading is introduced to solar cells. The efficiency is increased, mostly due to an increase in the short-circuit current density caused by a combination of lower band gap and a better interface between the absorber and window layer, despite a loss in the open-circuit voltage caused by the lower band gap and reduced charge carrier concentration.  相似文献   

4.
磷酸银差的稳定性能是限制其发展的主要瓶颈,与之相关的理论研究依然匮乏;同时,通过实验手段难以获得描述Ag_3PO_4熵、焓、自由能等热力学性质的相关信息.基于上述问题,本文从理论上探讨了磷酸银稳定性能与热力学性质.基于密度泛函理论的第一性原理,应用规范-守恒赝势平面波方法,对Ag_3PO_4Mulliken布居、能带结构、态密度以及声子谱、声子态密度进行了计算分析.研究结果表明:P—O、O—O间共价健的存在导致Ag_3PO_4原胞中易形成稳定PO4四面体结构,该结构能够弱化Ag—O健合力,使Ag+处于亚稳态;当Ag_3PO_4接触光生电子时,Ag+易摆脱O2-束缚获得电子形成单质银而表现出光不稳定性;Ag_3PO_4具有动力学稳定性特征;300~3 000 K范围内,Ag_3PO_4晶体体系熵、焓随温度增加呈非线性增加,自由能下降,等容热容CV在1 200 K时达到恒定,约为93 cal/cell·K.上述计算结果与实验结果吻合.  相似文献   

5.
Thermoelectric solid solutions of Bi2 (Te1−xSex)3 with x = 0, 0.2, 0.4, 0.6, 0.8 and 1 were grown using the Bridgman technique. Thin films of these materials of different compositions were prepared by conventional thermal evaporation of the prepared bulk materials. The temperature dependence of the electrical conductivity σ, free carriers concentration n, mobility μH, and seebeck coefficient S, of the as-deposited and films annealed at different temperatures, have been studied at temperature ranging from 300 to 500 K. The temperature dependence of σ revealed an intrinsic conduction mechanism above 400 K, while for temperatures less than 400 K an extrinsic conduction is dominant.The activation energy, ΔE, and the energy gap, Eg, were found to increase with increasing Se content. The variation of S with temperature revealed that the samples with different compositions x are degenerate semiconductors with n-type conduction. Both, the annealing and composition effects on Hall constant, RH, density of electron carriers, n, Hall mobility, μH, and the effective mass, m/m0 are studied in the above temperature range.  相似文献   

6.
In this work the selenization reactions and reaction paths in CuInxGa1-xSe2 thin films prepared by sputtering and post-selenization process are investigated. The in-situ electrical resistance measurement technique is applied to monitor all the selenization reactions. The crystal structure is determined by X-ray diffraction (XRD) measurement. From the analysis of resistance-temperature curves and the XRD patterns, the phase evolutions of various crystalline and selenization reaction paths have been obtained. From these measurements, the reaction mechanisms and kinetics in the CuInGa-Se system are further understood.  相似文献   

7.
The structural and magnetic properties of the mixed spinel Co1+x Si x Fe2?2x O4 system for 0·1≤x≤0·6 have been studied by means of X-ray diffraction, magnetization, and Mössbauer spectroscopy measurements. X-ray intensity calculations indicate that Si4+ ions occupy only tetrahedral (A) sites replacing Fe3+ ions, and the added Co2+ ions substitute for (B) site Fe3+ ions. The Mössbauer spectra at 300 K have been fitted with two sextets in the ferrimagnetic state corresponding to Fe3+ at the A and B sites, forx≤0·3. The Mössbauer intensity data shows that Si possesses a preference for the A site of the spinel. The variation of the saturation magnetic moment per formula unit measured at 300 K with the Si content, is explained on the basis of Neel’s collinear spin ordering model forx≤0·3 which is supported by Mössbauer, and X-ray data. The Curie temperature decreases nearly linearly with increase of the Si content, forx=0·1–0·6.  相似文献   

8.
A solid state reaction method was used to synthesize barium titanate (BT) and barium cerium titanate (BCT) ceramics at sintering temperature of 1473 K for 4 h. The effect of cerium (Ce) on the structure, microstructure and dielectric properties of BCT was investigated. The scanning electron microscopy (SEM) investigations revealed that the grain size increases with increasing Ce content. The X-ray diffraction (XRD) patterns showed mostly the BT phase, where the lattice parameter decreased with the addition of Ce. The temperature dependence of dielectric constant showed decrease in the phase transition temperature with higher Ce content. The dielectric constant decreased slightly with increasing frequency. The direct current (dc) density-voltage characteristics of the ceramics showed ohmic behavior for both the BT and BCT. As the temperature increased, the dc resistivity of the ceramics decreased. The activation energy increased with increasing Ce content.  相似文献   

9.
BCxNy thin films deposited at 250 °C by pulsed reactive magnetron sputtering of a B4C target in an Ar/N2 plasma were studied by elastic recoil detection analysis, Fourier transform infrared, Raman, and photoelectron spectroscopy, electron microscopy, and nanoindentation. In the concentration range of 6% to 100% N2 in the sputter plasma the segregation into nanocrystalline hexagonal boron nitride and amorphous sp2 carbon is the dominant process during the film growth. The stoichiometric ratio and structural details of the major phases depend on the N2 concentration in the plasma and have significant influence on the Young′s modulus and the elastic recovery of the BCxNy thin films.  相似文献   

10.
This paper describes the synthesis and characterization of CuIn1 − xGaxSe2 − ySy (CIGSeS) thin-film solar cells prepared by rapid thermal processing (RTP). An efficiency of 12.78% has been achieved on ~ 2 µm thick absorber. Materials characterization of these films was done by SEM, EDS, XRD, and AES. J-V curves were obtained at different temperatures. It was found that the open circuit voltage increases as temperature decreases while the short circuit current stays constant. Dependence of the open circuit voltage and fill factor on temperature has been estimated. Bandgap value calculated from the intercept of the linear extrapolation was 1.1-1.2 eV. Capacitance-voltage analysis gave a carrier density of 4.0 × 1015 cm− 3.  相似文献   

11.
The BiCoxFe1 − xO3 samples have been successfully synthesized by hydrothermal process. The resulting products were characterized by X-ray powder diffraction (XRD), energy dispersive X-ray (EDS), differential thermal analysis (DTA), and physical property measurement system (PPMS).It was found that the magnetization of the obtained products was greatly enhanced by Co substituting for Fe ions. Furthermore, the value of magnetism of BiCoxFe1 − xO3 samples can be adjusted by Fe doping concentration. DTA curve indicates the ferroelectric properties of the obtained BCFO samples are not affected by Co substitution. Therefore, it would be interesting to realize thin films with similar compositions and study their properties in the interest of device applications.  相似文献   

12.
The goal of this paper is to undertake a detailed first principle calculation of the structural, electronic and optical properties of Sn1−xSbxO2. The results show that the stability of Sn1−xSbxO2 in the full range of Sb content points to the probability of a continuous solid solution, where the increasing Sb content leads to volume expansion with different variation trends in the lattice constants. The increase of Sb concentration in the semiconductor–metal–semimetal transition occurs in consonance with the corresponding changes in its structural, electronic and optical properties. Two competing mechanisms play essential roles in this transition, namely; the many body effect and the atom disorder. Our calculations concur with previous X-ray diffraction, sheet resistance, resistivity and optical parameters detections. The studies present a practical way of tailoring the physical behaviors of Sn1−xSbxO2 through the alloying technique.  相似文献   

13.
High resolution O K-edge and Cu L3-edge X-ray absorption near-edge-structure (XANES) spectra of the high-Tc cuprates of (Tl0.5Pb0.5)Sr2(Ca1–xYx)Cu2O7 (Tl-1212) and (Hg0.5Pb0.5)Sr2(Ca1–xYx)Cu2O7 (Hg-1212) in powder form were measured using a bulk sensitive total-fluorescence-yield technique. Near the O 1s edge, the pre-edge peak with maxima at 528.3 eV is ascribed to the transitions to O 2p holes located in the CuO2 planes. The intensity of this pre-edge peak increases with increasing doping level of Ca2+ into the Y3+ sites in Tl-1212 and Hg-1212. In the Cu L-edge absorption spectra, high-energy shoulders at around 933 eV are attributed to the transitions to the Cu(2p3/2)–13d10L states in the CuO2 layers, where L denotes the O 2p ligand hole. The behavior of these shoulders in Tl-1212 and Hg-1212 correlates with that of the pre-edge peak at 528.3 eV in the O K-edge absorption spectra. The results can lead us to understand the hole distribution in high-Tc cuprates which will give a direction to find new high-Tc materials.  相似文献   

14.
Recent theoretical calculations have suggested the coupling of electrons to high-energy oxygen phonons as an explanation of superconductivity in the Ba1–x K x BiO3–y system. We have synthesized high-quality single crystals of the material and have examined the behaviors of critical field and critical current parameters as a function of changes in the oxygen content and in the Ba/K ratio. We have determined, via positron lifetime spectroscopy and singlecrystal X-ray measurements, that the oxygen stoichiometry in this system can be varied without significant impact on the metal atom sublattice. These results facilitate an investigation of the dependence of critical parameters on dopant and defect levels in this system.  相似文献   

15.
We performed a systematic comparative theoretical study of noncovalent interactions of free-base H2Pc and a series of 3d transition metal(II) phthalocyanines (where the transition metals included manganese, iron, cobalt, nickel, copper and zinc) with fullerene C60, by employing a DFT technique accounting for vdW interactions (PBE GGA functional with a dispersion correction by Grimme). We observed four different types of Pc interaction with fullerene cage, depending on central metal atom. Upon complexation with C60, the macrocyclic plane undergoes distortion in all cases, to a different degree. Some correlation was observed between the calculated formation energies for Pc–fullerene complexes and intermolecular separations in them, where stronger binding is generally associated with shorter MCC60 and NCC60 distances. Despite of considerable differences in the structure of Pc–fullerene complexes, the latter do not exhibit notable variations in the distribution of electrostatic potential, contrary to spin density plots for open-shell species. Similarly, HOMO and LUMO distribution can vary within some limits.  相似文献   

16.
Fe/SiO2 composite particles were synthesized by hydrogen reduction of Fe2O3/SiO2 precursor, which was prepared by sol-gel method. A reduction temperature higher than 600 °C is required for the complete conversion of Fe2O3 to Fe. Fe/SiO2 composite particles exhibit superior complex permittivity and permeability in the microwave band. A reflection loss higher than − 70 dB as well as a broad absorption band can be simultaneously obtained for Fe/SiO2-based coatings about 2 mm in thickness, suggesting that the Fe/SiO2 composite particles are a promising candidate for high performance electromagnetic absorption materials.  相似文献   

17.
18.
Yozo Watanabe 《Vacuum》2009,84(5):514-517
(ZnO)1−x(GaN)x:Mn2+ powder was prepared by a conventional solid-state reaction under an NH3 gas flow. The sample preparation conditions including the mixing ratio of the raw materials, the annealing temperature, and the annealing time were varied. The crystallinity and the photoluminescence (PL) intensity of this fluorescent material were improved by increasing the amount of ZnO and by increasing the annealing time, and no changes was observed in the PL wavelength. The crystallinity of the samples was enhanced and the PL intensity increased markedly at annealing temperatures of 700 °C and 800 °C, respectively. Moreover, it was clarified that the sample could be synthesized at annealing temperatures of above about 650 °C.  相似文献   

19.
Abstract

Superconducting materials have contributed significantly to the development of modern materials science and engineering. Specific technological solutions for their synthesis and processing helped in understanding the principles and approaches to the design, fabrication and application of many other materials. In this review, we explore the bidirectional relationship between the general and particular synthesis concepts. The analysis is mostly based on our studies where some unconventional technologies were applied to different superconductors and some other materials. These technologies include spray-frozen freeze-drying, fast pyrolysis, field-assisted sintering (or spark plasma sintering), nanoblasting, processing in high magnetic fields, methods of control of supersaturation and migration during film growth, and mechanical treatments of composite wires. The analysis provides future research directions and some key elements to define the concept of ‘beautiful’ technology in materials science. It also reconfirms the key position and importance of superconductors in the development of new materials and unconventional synthesis approaches.  相似文献   

20.
The Gd2(TixZr1 − x)2O7 (x = 0, 0.25, 0.50, 0.75, 1.00) ceramics were synthesized by solid state reaction at 1650 °C for 10 h in air. The relative density and structure of Gd2(TixZr1 − x)2O7 were analyzed by the Archimedes method and X-ray diffraction. The thermal diffusivity of Gd2(TixZr1 − x)2O7 from room temperature to 1400 °C was measured by a laser-flash method. The Gd2Zr2O7 has a defect fluorite-type structure; however, Gd2(TixZr1 − x)2O7 (0.25 ≤ x ≤ 1.00) compositions exhibit an ordered pyrochlore-type structure. Gd2Zr2O7 and Gd2Ti2O7 are infinitely soluable. The thermal conductivity of Gd2(TixZr1 − x)2O7 increases with increasing Ti content under identical temperature conditions. The thermal conductivity of Gd2(TixZr1 − x)2O7 first decreases gradually with the increase of temperature below 1000 °C and then increases slightly above 1000 °C. The thermal conductivity of Gd2(TixZr1 − x)2O7 is within the range of 1.33 to 2.86 W m− 1 K− 1 from room temperature to 1400 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号