首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Abstract

Nanostructured binary semiconducting metal oxides have received much attention in the last decade owing to their unique properties rendering them suitable for a wide range of applications. In the quest to further improve the physical and chemical properties, an interest in ternary complex oxides has become noticeable in recent times. Zinc stannate or zinc tin oxide (ZTO) is a class of ternary oxides that are known for their stable properties under extreme conditions, higher electron mobility compared to its binary counterparts and other interesting optical properties. The material is thus ideal for applications from solar cells and sensors to photocatalysts. Among the different methods of synthesizing ZTO nanostructures, the hydrothermal method is an attractive green process that is carried out at low temperatures. In this review, we summarize the conditions leading to the growth of different ZTO nanostructures using the hydrothermal method and delve into a few of its applications reported in the literature.  相似文献   

2.
Park S  Boo H  Kim Y  Han JH  Kim HC  Chung TD 《Analytical chemistry》2005,77(23):7695-7701
The nanoporous platinum oxide (H1-ePtO) as a hydrogen ion-selective sensing material is reported. Bare nanoporous platinum oxides exhibit near-Nernstian behavior (e.g., -55 mV/pH in PBS), ignorable hysteresis, a short response time, and high precision, which are remarkably better than those of flat platinum oxides. The electrode potential of a nanoporous platinum oxide responds exclusively to hydrogen ion, which implies its usefulness as a solid-state pH sensor. In the present study, the performance of nanoporous platinum oxide was investigated and compared with that of IrOx in terms of selectivity and the influences of ionic strength, temperature, complexing ligands, and surfactants. H1-ePtO functions well as a pH-sensing solid-state material, and it is viewed as a promising alternative to IrOx. Interference by redox couples was successfully suppressed by covering the H1-ePtO surface with a protective layer, e.g., an electropolymerized polyphenol thin film. Since the nanoporous platinum oxide with such a protective layer is particularly suitable for miniaturization and micropatterning, our findings suggest its usefulness in applications such as solid-state pH sensors embedded in chip-based microanalysis systems.  相似文献   

3.
Vanadium oxides have for many decades attracted much attention for their rich and unique physical properties which pose intriguing questions as to their fundamental origins as well as offering numerous potential applications for microelectronics, sensors, and microelectromechanical systems (MEMS). This paper reviews the unique structure and properties of the two most common vanadium oxides which have entered into microfabricated devices, VO2 and V2O5, and some of the past and future device applications which can be realized using these materials. Two emerging new materials, sodium vanadium bronzes and vanadium oxide nanotubes are also discussed for their potential use in new microelectronic devices.  相似文献   

4.
Complex metal oxides, including ferroelectric, ferrimagnetic and superconducting ceramics, have a variety of technologically useful properties that can be exploited for a number of applications. Fabrication of complex metal oxide ceramics with specific properties requires high-purity powders with controlled chemical compositions, size distributions, and morphologies. Powders with these characteristics can be produced by aerosol processes in which fine particles are generated in gaseous flow systems. The particles can also be deposited from the gas phase onto surfaces to form films. This paper will discuss the use of aerosol processes for the generation of complex metal oxide powders. A review of aerosol processes will be presented first, followed by a discussion of the methods used for the generation of superconducting ceramic powders. Examples include the production of YBa2Cu3O7, La1.85Sr0.15CuO4, and Tl-Ca-Ba-Cu-O powders and films. Emphasis will be placed on defining the conditions required for the generation of chemically homogeneous particles with controlled morphologies.  相似文献   

5.
In the past decade, several different classes of two-dimensional (2D) materials beyond graphene such as layered polymorphs of group V elements (phophorene, arsenene), Metalenes (gallenene, stanene etc.), Transition Metal–Dichalcogenides (TMDs), group III monochalcogenides, transition metal carbides as well as nitrides have been thoroughly explored. These atomically thin materials have gathered significant focus due to their unique electronic, optical, and magnetic properties, which are seldom found in their bulk counterparts due to the high surface to volume ratios and quantum confined electronic structure. These properties have led to excitement in the research community due to their potential applications in various fields of optoelectronics, energy harvesting and storage, sensing, electronics, magneto-electronics, and thermo-electronic applications. However, there is another emerging class of layered oxide 2D materials, which has been sporadically explored and lacks a systematic compilation of the made progress, potential benefits and research opportunities that may lie ahead. This specific review provides a thorough and systematic summary of research carried out on layered 2D oxides both from an experimental and theoretical perspective. Due to ultra-thin nature of the 2D metal oxides, a majority of the atoms are accessible to the surfaces, which induces new properties and applications in comparison to traditional bulk oxides. We discuss several different classes of metal oxides in their 2D forms such as MO, MOx, MxOy (where M stands for metals; x and y possible oxidation states) as well as Perovskite type oxides in this review specifically focusing on optoelectronics, sensing and electrochemical storage applications. We further make critical comparisons with bulk metal oxides, and elaborate the specific advantages of 2D metal oxides as compared to their bulk counterparts in respective applications. Finally, we conclude by providing a critical assessment and outlook of technical challenges and research opportunities for future development of layered 2D oxides.  相似文献   

6.
Nanoporous Al2O3 with well-defined pore structure, crystallized framework and spherical morphology has been prepared by a facile template-free approach, which involves the preparation via homogeneous precipitation and subsequent decomposition of spherical basic aluminium sulphate particles. The particle size of the spheres can be tuned by controlling the holding time from the beginning of precipitation, and a proper decomposition temperature is important to get high surface area, high pore volume and well-defined pore structures. By the similar way, nanoporous ZrO2 and TiO2 spherical particles can also be prepared. These nanoporous oxides all have moderately high surface area (50–70 m2/g) and well-defined nanopores of around 4–12 nm with very narrow pore size distribution. The frameworks of these oxide spheres consist of many small nanocrystallites, between which the nanopores exist. Compared with the soft and hard template routes, this decomposition strategy of sulphates for nanoporous oxides has the advantages of simplicity and low cost.  相似文献   

7.
Abstract

Silver (100) and (111) single crystals were exposed to a unique hyperthermal atomic oxygen source, which produces a high flux of 5.1eV atomic oxygen, for seven hours at 220°C. The resultant oxide and oxide–metal interfaces were characterized by optical, scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HREM). The oxide scale was more than 10 µm thick and very weakly attached to the Ag substrate. The silver oxides were complex and surprising, differ in their thickness and the oxide phases due to the orientation of the Ag single crystals. The cross-section TEM studies revealed complex microstructures with many defects, such as micro-twins, porosity and irregular shaped grains.  相似文献   

8.
Abstract

Although it is well established that reactive elements such as yttrium and hafnium can segregate to oxide/metal interfaces and oxide grain boundaries in thermally grown oxides, their distribution and role at these sites are less certain. For example, their effect on oxide growth, scale plasticity and spallation is still debated. It has also been reported that hafnium and yttrium rich oxide particles can be present within growing alumina scales and that the growth or shrinkage of these particles can affect the Y and Hf distributions in the aluminium oxide grain boundaries in their vicinity. Hence, we now report the use of very high spatial resolution imaging in the SuperSTEM electron microscope to investigate the distribution of Y and Hf in aluminium oxide grain boundaries at the atomic level.

The oxide scales studied were detached from Fe – 20Cr – 5Al alloy substrates doped with Y and Hf, which had been oxidised for up to 100 h at 1250°C in laboratory air. The scales were ion beam thinned prior to examination in the STEM, and a series of tilting experiments and through focal series were used to map out the distributions of the reactive elements. The influence of electron beam/sample interactions was also studied and some evidence for the movement of Hf and Y atoms along the grain boundaries to the surfaces of the thin oxide foils is also reported.  相似文献   

9.
The rich array of conventional and exotic electronic properties that can be generated by oxide heterostructures is of great potential value for device applications. However, only single transistors bare of any circuit functionality have been realized from complex oxides. Here, monolithically‐integrated n‐type metal‐oxide‐semiconductor logic circuits are reported that utilize the two‐dimensional electron liquid generated at the LaAlO3/SrTiO3 interface. Providing the capability to process the signals of functional oxide devices such as sensors directly on oxide chips, these results illustrate the practicability and the potential of oxide electronics.  相似文献   

10.
Abstract

Nanoporous metals prepared via dealloying or selective leaching of solid solution alloys and compounds represent an emerging class of materials. They possess a three-dimensional (3D) structure of randomly interpenetrating ligaments/nanopores with sizes between 5 nm and several tens of micrometers, which can be tuned by varying their preparation conditions (such as dealloying time and temperature) or additional thermal coarsening. As compared to other nanostructured materials, nanoporous metals have many advantages, including their bicontinuous structure, tunable pore sizes, bulk form, good electrical conductivity, and high structural stability. Therefore, nanoporous metals represent ideal 3D materials with versatile functionality, which can be utilized in various fields. In this review, we describe the recent applications of nanoporous metals in molecular detection, catalysis, 3D graphene synthesis, hierarchical pore formation, and additive manufacturing (3D printing) together with our own achievements in these areas. Finally, we discuss possible ways of realizing the ultimate 3D functionality beyond the scope of nanoporous metals.  相似文献   

11.
Metal oxide hollow structures have received great attention because of their many promising applications in a wide range of fields. As electrode materials for lithium‐ion batteries (LIBs), metal oxide hollow structures provide high specific capacity, superior rate capability, and improved cycling performance. In this Research News, we summarize the recent research activities in the synthesis of metal oxide hollow nanostructures with controlled shape, size, composition, and structural complexity, as well as their applications in LIBs. By focusing on hollow structures of some binary metal oxides (such as SnO2, TiO2, Fe2O3, Co3O4) and complex metal oxides, we seek to provide some rational understanding on the effect of nanostructure engineering on the electrochemical performance of the active materials. It is thus anticipated that this article will shed some light on the development of advanced electrode materials for next‐generation LIBs.  相似文献   

12.
Abstract

Producing insulating layers on III–V semiconductors is crucial for a number of important device applications. Al-containing thermal oxides on AlGaAs and InAlAs have been found to possess good insulating characteristics and oxides on InAlP have recently been shown to be even more promising. This paper presents data on the thermal oxidation at 500°C in moist nitrogen (95°C) of MBE-grown InAlP layers (In0.525Al0.475P and In0.494Al0.506P) lattice matched to GaAs. The oxides (20–300 nm thick) have been characterized by Auger electron spectroscopy, X-ray photoelectron spectroscopy, Rutherford back-scattering spectroscopy, transmission and scanning electron microscopy. Oxides are amorphous and appear to be a mixture of indium phosphates and aluminum oxide. The oxidation kinetics are parabolic, and the InAlP layer with the higher Al content oxidizes slightly faster. Electrical measurements performed on metal-insulator-semiconductor (MIS) structures indicate that the oxide has good electrical properties, exhibiting low current densities (up to 14 V), making the oxide films potentially useful for some device applications.  相似文献   

13.
Abstract

Organic-based photovoltaics (PV) have attracted increasing attention in recent years and efficiencies exceeding 8% have recently been confirmed. These low cost, lightweight and mechanically flexible devices offer unique advantages and opportunities currently unavailable with crystalline silicon technology. Progress in the field of organic PV has been achieved in part due to the incorporation of transition metal oxides. These offer a wide range of optical and electronic properties, making them applicable in organic-based PV in many capacities. Transparent electrodes can be made from doped metal oxides. The high intrinsic charge carrier mobility of many undoped metal oxides makes them attractive as active materials and charge collectors. Metal oxides can increase the charge selectivity of the electrodes due to the energetic positioning of their valence and conduction bands. Thin films of these materials can manipulate the light distribution inside of organic devices, allowing for improved light harvesting. Metal oxides are stable and can be processed at low temperatures. Consequently, they have been demonstrated as suitable intermediate layer materials in tandem cells. Finally, oxygen-deficient metal oxides can improve the stability of the oxygen- sensitive organic semiconductors. The present work reviews the various applications of metal oxide layers in organic PV devices and summarises the challenges associated with organic/oxide interfaces.  相似文献   

14.
Abstract

Layered d-metal pnictide oxides are a unique class of compounds which consist of characteristic d-metal pnictide layers and metal oxide layers. More than 100 of these layered compounds, including the recently discovered Fe-based superconducting pnictide oxides, can be classified into nine structure types. These structure types and the chemical and physical properties of the characteristic d-metal pnictide layers and metal oxide layers of the layered d-metal pnictide oxides are reviewed and discussed. Furthermore, possible approaches to design new superconductors based on these layered d-metal pnictide oxides are proposed.  相似文献   

15.
Abstract

In this article, we review the applications of a novel theory (Ohshima 2009 Sci. Technol. Adv. Mater. 10 063001) to the analysis of electrokinetic data for various soft particles, that is, particles covered with an ion-permeable surface layer of polyelectrolytes. Soft particles discussed in this review include various biological cells and hydrogel-coated particles as a model of biological cells. Cellular transformations increase the concentration of sialic acid of glycoproteins and are associated with blocked biosynthesis of glycolipids and aberrant expression of the developmentally programmed biosynthetic pathway. The change in shape or biological function of cells may affect their surface properties and can be detected by electrokinetic measurements. The experimental results were analyzed with Ohshima’s electrokinetic formula for soft particles and soft surfaces. As a model system, hydrogel surfaces that mimic biological surfaces were also prepared and their surface properties were studied.  相似文献   

16.
Abstract

The addition of ultra-fine and nano-sized particles in composite materials influences their properties. In order to understand the influence of the nano-size of metal particles on the oxidation behaviour, a series of in situ studies by thermogravimetry (TG) and high temperature X-ray diffraction (XRD) was performed on Al, Fe and Cu during heating with post oxidation analysis by field emission – scanning electron microscope (FE-SEM). The oxidation reaction depends, for all three studied metals, on the particle size both in regard to transient oxide formation and formation temperatures. On a nano-scale Al forms θ-Al2O3 and γ-Al2O3 simultaneously at 500°C, but both of these oxides transform to α-Al2O3 at 975°C producing nano-scaled oxide particles. Aluminium particles with sizes from 2 to 25 μm form α-Al2O3 only, starting at temperatures close to the melting point. Nano-sized Fe forms on heating from 340°C α-Fe2O3 only and no other oxides. On nano-sized Cu particles the formation of Cu2O starts at 140°C, transforming completely to CuO at 300°C.  相似文献   

17.
In this paper, we present recent results of investigations of hybrid materials consisting of nanoporous oxides layers loaded with Ag nanoparticles: Ag/TiO2-n/Ti and Ag/Al2O3-n/Al (where “n-“stands for nanotubes), which could be used as active SERS substrates or as bioactive materials in medicine (implants). Simple electrochemical, chemical and physical methods appear suitable for fabricating such hybrid materials having different functional properties.  相似文献   

18.
Magnetic recording coatings are still made predominantly of iron oxide particles but the newer particles are significantly better in magnetic properties, dispersibility and orientability than the particles used, say, ten years ago. Chromium dioxide particles show excellent recording performance (particularly at densities above 1000 flux changes per millimeter) but they are presently being challenged by the new cobalt-modified iron oxides. These are formed by diffusing cobalt into the surface of acicular iron oxide particles and it is claimed that the particles prepared in this way are much more stable with respect to temperature and stress than the older cobalt-substituted iron oxides. Metal particles, by virtue of their high moment density and high coercivity, would be ideal for high density recording if they could be passivated permanently. The paper reviews improvements which have been made within the last nine years in the properties of particles for magnetic recording applications and discusses how the improvements were effected.  相似文献   

19.
Abstract

Pickering emulsion, which is an emulsion stabilized by solid particles, offers a wide range of potential applications because it generally provides a more stable system than surfactant-stabilized emulsion. Among various solid stabilizers, nanocellulose may open up new opportunities for future Pickering emulsions owing to its unique nanosizes, amphiphilicity, and other favorable properties (e.g. chemical stability, biodegradability, biocompatibility, and renewability). In this review, the preparation and properties of nanocellulose-stabilized Pickering emulsions are summarized. We also provide future perspectives on their applications, such as drug delivery, food, and composite materials.  相似文献   

20.
The results of an experimental investigation of the optical properties of anodic vanadium oxide films are presented. It is shown that films of different phase composition (VO2, V2O5, or a mixture of two phases) can be obtained, depending on the oxidation regime, and that the absorption and transmission spectra are modified significantly in accordance. The optical properties of the oxides, whose composition is close to stoichiometric vanadium dioxide, demonstrate the occurrence of a metal-semiconductor phase transition in the amorphous films. The results presented are important both from the standpoint of technical applications of thin film systems based on anodic vanadium oxides and for more detailed understanding of the physical mechanism of the metal-semiconductor phase transition and the influence of structural disorder on the transition. Pis’ma Zh. Tekh. Fiz. 25, 81–87 (April 26, 1999)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号