首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Nanocomposite coatings of silver particles embedded in a plasma polymer matrix possess interesting properties depending on their microstructure. The film microstructure is affected among others also by the RF power supplied during the deposition, as shown by transmission electron microscopy. The optical properties are characterized by UV–vis–NIR spectroscopy. An anomalous optical absorption peak from the Ag nanoparticles is observed and related to the microstructure of the nanocomposite films. Furthermore, a long-term aging of the coatings is studied in-depth in ambient air and in aqueous environments. It is shown that the studied films are not entirely stable. The deposition conditions and the microstructure of the films affect the processes taking place during their aging in both environments.  相似文献   

2.
Nanolayered composites are used in a variety of applications such as wear resistant coatings, thermal barrier coatings, optical and magnetic thin films, and biological coatings. Residual stresses produced in these materials during processing play an important role in controlling their microstructure and properties. In this paper, we have studied the residual stresses in model metal-ceramic Al/SiC nanoscale multilayers produced by physical vapor deposition (magnetron sputtering). X-ray synchrotron radiation was used to measure stresses in the multilayers using the sin2Ψ technique. The stresses were evaluated as a function of layer thicknesses of Al and SiC and also as a function of the number of layers. The stress state of Al in the multilayer was largely compressive, compared to single layer Al stresses. This is attributed to a peening mechanism due to bombardment of the Al layers by SiC and Ar neutrals during deposition. The stress evolution was numerically modeled by a simplified peening process to qualitatively explain the Al thickness-dependent residual stresses.  相似文献   

3.
Optical and mechanical properties of diamond-like carbon films grown by chemical vapor deposition were investigated as a function of the nitrogen content in the gas mixture. The nonmonotonic variation of the optical band gap and the microhardness of the films are interpreted using a model which allows for the influence of nitrogen on their structure. It is shown that nitrogen-containing diamond-like carbon films hold out promise as protective and antireflection coatings for silicon solar cells. Pis’ma Zh. Tekh. Fiz. 24, 87–92 (May 26, 1998)  相似文献   

4.
The effects of deposition parameters on the deposition rate, microstructure, and composition of Ge1−xCx thin films prepared by plasma enhanced chemical vapor deposition were studied and the films' infrared optical properties were investigated. The results show that the carbon content of these films increases as the precursor gas flow ratio of CH4:GeH4 increases, while the infrared refractive index of these films decreases from 4 to 2. The deposition rate increases with the radio-frequency power and reaches a constant value when the power goes above 60 W. Ge1−xCx/diamond-like carbon infrared antireflection coatings were prepared, and the transmittance of the coatings in the band of 8 to 14 μm was 88%, which is superior to that of Zinc Sulfide substrate by 14%.  相似文献   

5.
Ultraviolet absorbing CeO2–TiO2 coatings were prepared by the sol–gel spin-coating process heat treated at 500 °C. The films obtained were brilliant yellow, adherent and had some pattern on the soda-lime glass substrate. The optical transmittance, thickness and hardness of the films as a function of the number of coatings, aging time (0, 24, 48, 96 h) or aging temperature (28, 35, 40, 50 °C) were determined, and surface microstructure of the films was observed by SEM. We found some pattern on the surface of films. This pattern was similar to that of the stage for fixing the substrate. The pattern on the surface of films would be caused by the difference of thermal conductivity to slide glass in the part of metal of the stage and hollow part of the stage.  相似文献   

6.
LaF3 thin films were deposited by electron beam (EB) and resistive heating (RH) evaporation, respectively. Properties such as microstructure, chemical composition, surface morphology and optical constants of the LaF3 thin films were characterized by measurements of X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy and spectrophotometer, then comparison was made between this two deposition methods. It's found that the microstructure properties of the LaF3 films deposited by these two methods were different, and slight content of oxyfluoride films was formed during deposition according to the result of chemical composition analysis. The microstructure of LaF3 bulk materials after interaction with electron beam and resistive heating was also characterized to analyze how the two deposition processes affect the formation of LaF3 thin films and their microstructure properties. When it was for the laser resistance of the films, although the EB evaporated LaF3 thin films occupied lower absorption and optical loss than those of the RH films, they showed slightly smaller laser induced damage thresholds at 355 nm, which was thought to be related to their much more rougher surface and higher tensile stress.  相似文献   

7.
In the present research, in order to deposit indium-tin oxide (ITO) thin films the method of RF reactive sputtering was used. Sputtering of two types indium-tin targets in the presence of oxygen as reactive gas was made. The technological parameters were optimized to obtain films with good quality on different substrates. The films' microstructure was studied by TEM and SAED. To identify the optical properties of the films the methods of infrared spectrometry and laser ellipsometry were used. UV-VIS spectrophotometry showed the high visible transmittance of the RF sputtered ITO films. Heating of the substrates during the films sputtering and their post deposition thermal treatment also were studied. The ultimate goal of the present research activities was to develop new technological processes leading to low-cost, highly effective optical coatings for application in photo thermal solar energy conversion and utilization.  相似文献   

8.
Nanostructured ZnS:Mn films have been grown and their structure, optical properties, and photoluminescence have been studied. The nanostructured ZnS:Mn films have been grown on silicon and glass substrates via hydrochemical deposition from solution. The crystal structure and microstructure of the films have been studied by X-ray diffraction and atomic force microscopy. The band gap of the nanostructured ZnS:Mn films has been determined. The intensity of their photoluminescence bands has been shown to increase with decreasing nanoparticle size.  相似文献   

9.
Copper sulfide (Cu x S) films deposited on polypropylene substrate were obtained by chemical bath deposition (CBD) method. The influence of the deposition time on the morphology of Cu x S films was studied by means of scanning electron microscopy. We have found that the average particles dimension increased from 37 to 49 nm with the increase of deposition time from 20 to 30 minutes. The study of optical properties of the copper sulfide films was carried out based on optical transmission spectra recorded in the 400–1000 nm wavelength range. The optical constants, such as refractive index, extinction coefficient and dielectric constant as well as electrical and optical conductivity of Cu x S films were calculated. The obtained values are in accordance with the ones reported in the literature:We have shown that both, morphological and optical properties of Cu x S films are strongly affected by the deposition time.  相似文献   

10.
PbS thin films were grown on glass substrates by chemical bath deposition (CBD) using lead nitrate, thiourea and sodium hydroxide in aqueous solutions at three different temperatures (22, 36 and 50?°C). The microstructure and morphology evolution of the films were investigated using X-ray diffraction, scanning electron microscopy and atomic force microscopy. Optical properties were studied using UV–Vis–IR spectroscopy. The results indicate that temperature plays an important role in controlling the morphology and optical properties of nanostructured PbS thin films through changing deposition mechanism. The active deposition mechanism changed from cluster to ion-by-ion mechanism with an increase in deposition temperature from 22 to 50?°C, and consequently, film properties such as morphology, optical absorption and preferred orientation changed completely.  相似文献   

11.
Vanadium dioxide (VO2) has attracted a great interest for smart coating applications because of its promising thermochromic properties. Thermochromic performance of VO2 is closely related to the phase composition and the microstructure, which are largely dependent on the synthesis method and growth control. This review summarizes the recent progress in fabrication of VO2 by gas deposition. Representative deposition techniques, such as chemical vapor deposition (CVD), physical vapor deposition (PVD), sol–gel and chemical solution methods and their relative merits are discussed. To be practically applicable, high-performance thermochromic VO2 films are desired, often featured with a suitable phase transition temperature (Tc), high luminous transmittance (Tlum) and good modulation capability of solar energy (ΔTsol). Focused on the strategies used to improve thermochromic properties, this review also covers topics such as multilayer construction, elemental doping, substrate selection, and structure modification. Some theoretical progresses in understanding thermochromic coatings, including phase transition mechanism and energy modeling are also provided. Although significant progress has been made in improving the thermochromic performance of VO2 films, challenges are still present, particularly in commercial applications. Discussions on future trend and perspectives, as well as some important issues, of VO2 films used as smart coatings will be given finally.  相似文献   

12.
Molybdenumoxide (MoOx) thin films can change their optical properties upon exposure to hydrogen. Since the film properties strongly depend on process parameters we have studied how the films are affected by the total pressure during deposition. Stoichiometric and sub-stoichiometric MoOx films were prepared by reactive direct current magnetron sputtering in an atmosphere of argon and oxygen. Substoichiometric films were coated with platinum as a catalyst and were colored in diluted hydrogen atmosphere and bleached in air. Optical spectroscopy, X-ray reectometry, spectroscopic ellipsometry and simulations of the measured spectra were used to characterize the films ex situ. In situ switching characteristics as revealed by optical spectroscopy and changes in stress were measured as well. We find that the total pressure during sputter deposition has a strong influence on the optical constants, the film density, and the sputter rate. The mechanical stresses and switching Preprint submitted to Elsevier Science 10 March 2006 cycles during the film coloration and bleaching also strongly depend on the total pressure. The influence of the sputter pressure on film properties is explained by the kinetics during the sputter process.  相似文献   

13.
《Vacuum》2008,82(11-12):1484-1488
The behaviour of the crystalline properties of ZrO2 films prepared by electron beam physical vapour deposition (EB-PVD) is investigated as a function of their deposition rates. In this paper, the conditions for the preparation of tetragonal zirconia from yttria stabilized zirconia and from monoclinic powder as starting materials are reported. The variation of the crystallite size as a function of the deposition rate is studied and, additionally, the optical characterization that permits to determine the refractive index is presented. The obtained values are in agreement with the bulk ones showing that EB-PVD prepared samples have good performance for optical and protective coatings.  相似文献   

14.
J.Q. Zhu  C.Z. Jiang  J.C. Han  C.Q. Hu 《Thin solid films》2008,516(10):3117-3122
To effectively protect and improve the transmittance of ZnS optical elements in the far infrared band, combined amorphous diamond (a-D) and amorphous hydrogenated germanium carbide (a-Ge1−xCx:H) films have been developed. The optical interference coatings were designed according to the layer optics theory. The a-D films, of which refractive index and film thickness were controlled by changing substrate bias and deposition time respectively, were deposited by filtered cathodic vacuum arc technology. The a-Ge1−xCx:H films were prepared by radio frequency sputtering technology. During this process their refractive index was modulated by changing the gas flow rate ratio and their film thickness was controlled by the flow rate ratio and deposition time. It has been shown that the combined films are superexcellent antireflective and protective coatings for ZnS optical elements.  相似文献   

15.
We have studied TiO2, Ag, Ag/TiO2, and Cu/TiO2 coatings grown on track-etched polyethylene terephthalate membranes. The metals and oxides were deposited by reactive vacuum sputtering using a planar magnetron. The microstructure of the samples were examined by scanning and transmission electron microscopy techniques. The elemental composition of the coatings were determined by energy dispersive X-ray microanalysis, and their phase composition was determined by X-ray diffraction at different temperatures and by transmission electron diffraction. Titanium dioxide can be present on the surface of track-etched membranes (TMs) in three forms: nanocrystals of tetragonal anatase with orthorhombic brookite and amorphous TiO2 impurities. The copper-metallized TM has been shown to contain cubic Cu2O. The optical properties of the composite membranes and films have been studied by absorption spectroscopy. The energies of direct and indirect allowed optical transitions have been evaluated from measured absorption spectra of the TiO2, Ag/TiO2, and Cu/TiO2 coatings.  相似文献   

16.
ZnO:SiO2 films are intensively investigated for optical and electronic applications. Additionally, porous ZnO:SiO2 films are of great interest as catalyst and gas-sensing materials. The sol-gel method is an efficient and low-cost process for the deposition of meso- and microporous silica-based films. The present paper studies the effect of the withdrawal speed on the microstructure and optical properties of mesoporous ZnO:SiO2 films obtained by the sol-gel method. The morphology of the films was investigated by atomic force microscopy and the overall structure was studied by X-ray diffraction. The structure and size of the zinc oxide nanoparticles embedded in the silica matrix were investigated in more detail by transmission electron microscopy. These techniques showed ZnO:SiO2 films with crack-free mesoporous morphology and highly efficient embedding of ZnO nanoparticles with (100) preferred orientation. Furthermore, the optical transmittance (in the visible and near infrared regions) and the optical band gap value were observed to vary with withdrawal speed. It is shown that ZnO:SiO2 nanocomposites films which possess ZnO particles exhibiting a (100) orientation, with possible special applications in non-linear optics, could be prepared by the low-temperature crystallization sol-gel method.  相似文献   

17.
Abstract

A maraging steel with a composition of Fe–12·94Ni–1·61Al–1·01Mo–0·23Nb (wt-%) was investigated. Optical, scanning electron and transmission electron microscopy and X-ray diffraction analysis were employed to study the microstructure of the steel after different aging periods at temperatures of 450–600°C. Hardness and Charpy impact toughness of the steel were measured. The study of microstructure and mechanical properties showed that nanosized precipitates were formed homogeneously during the aging process, which resulted in high hardness. As the aging time is prolonged, precipitates grow and hardness increases. Fractography of the as forged steel has shown mixed ductile and brittle fracture and has indicated that the steel has good toughness. Relationships among heat treatment, microstructure and mechanical properties are discussed. Further experiments using tensile testing and impact testing for aged steel were carried out.  相似文献   

18.
Abstract

Amorphous carbon films containing titanium carbide (nc-TiC/a-C∶H) were deposited onto n-type silicon (100) by radio frequency reactive sputtering titanium target in an Ar–CH4 mixed atmosphere. The composition and microstructure of the films were characterised by means of X-ray photoelectron spectroscopy, field emitted SEM, XRD and Raman spectra. The mechanical and tribological properties of the films were measured by a nanoindentation tester and a ball-on-disc UMT–2MT tribometer. By adjusting the CH4 flowrate, Ti content in the films could be controlled, and a transition in structures of the films from loose polymer-like to glassy and dense nanostructure was observed. The density of coatings was improved by the introduction of TiC nanocrystalline particles. The mechanical and lubricious properties were different accordingly.  相似文献   

19.
This article deals with materials science aspects of In2O3:Sn (“ITO”) coatings and with the process technology of variants of sputtering used to obtain thin films with properties desired for specific applications. As an example, antistatic and antireflective coatings of monitor tubes are presented. The influence of sputter parameters such as substrate temperature, plasma excitation mode, sputter pressure and oxygen partial pressure on the quality of the films is discussed. It is shown how application‐oriented basic research helps to obtain recipes for materials design. Two basic aspects are discussed in more detail: the influence of an oxygen surplus in the films on microstructure and electrical properties and the correlation of electrical and optical parameters of the films.  相似文献   

20.
Recent coating characterization projects were selected as examples for demonstration of several modern coating characterization methods. X-ray photoelectron spectroscopy revealed differences in chemistry and atomic bonding in two commercial titanium nitride sputter deposits. Secondly, an interference-enhanced laser Raman method of phase identification for TiO2 was used to provide detail in thin film deposits not possible by X-ray diffraction methods. Thirdly, the internal stresses and microstructure obtained by transmission electron microscopy of sputter-deposited ZrO2-8mol.%Y2O3 films were related to the parameters used during deposition. Lastly, an optical transmission method is shown to improve the resolution of an SiO2 glass phase that had formed on sintered SiC coatings during high temperature oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号