首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Diabetes leads to a breakdown of the blood-retinal barrier (BRB), which can be demonstrated in experimental models by immunocytochemistry and magnetic resonance imaging (MRI). The present study utilizes these methods to investigate the mechanism of BRB breakdown in diabetic rabbits, a model ideally suited to both procedures. Rabbits were treated with alloxan and examined 2 months, 1 year, and 1.5 years after the development of diabetes to assess BRB breakdown using MRI and immunocytochemical staining for endogenous albumin. Using MRI, an increased incidence of retinal vascular leakage is first evident at 1 year of diabetes. Electron microscopic immunolocalization of albumin suggests that BRB compromise is principally mediated by transendothelial transport of serum proteins in endocytic vesicle-like structures of approximately 0.4-1 micron diameter. Some additional retinal vascular leakage is occasionally demonstrated through the interendothelial cell tight junctions, but only when adjacent vascular endothelial cells show degenerative changes. The similarity of these findings to those previously reported for diabetic humans and rats supports the use of the diabetic rabbit as a model for studying BRB dysfunction. MRI and electron microscopic (EM) immunocytochemistry are complementary methods for evaluating BRB dysfunction. MRI can provide an overall picture of the entire eye without sacrificing the animal. EM immunocytochemistry can provide a more detailed picture of a limited area of interest to gain insight into the mechanisms of extravasation. Together, both methods provide a more complete understanding of BRB breakdown in diabetic rabbits.  相似文献   

4.
5.
Calf thymus DNA was reacted in vitro with phenyl glycidyl ether (PGE) and was hydrolysed enzymatically, to the 5'-monophosphate nucleotides using deoxyribonuclease I (DNA-ase I) and nuclease P1. The adducts were concentrated using solid phase extraction (SPE), on a polystyrene divinylbenzene copolymer in order to remove the unmodified nucleotides. The adducts could be identified using capillary zone electrophoresis-electrospray tandem mass spectrometry (CZE ES-MS/MS), using sample stacking. In addition to the base alkylated 2'-deoxynucleotides present in the DNA-hydrolysate, also phosphate alkylated 2'-deoxynucleotide adducts were identified for TMP and dAMP. An additional adduct, dUMP alkylated on the uridine moiety was found originating from the hydrolytic deamination of dCMP alkylated on N3 of the cytosine moiety. Enzymatic hydrolysis using nuclease P1 was incomplete as shown by the presence of dinucleotides alkylated on the base moiety. They were successfully hydrolysed to the corresponding 2'-deoxynucleotides by snake venom phosphodiesterase (SVP). Data are shown indicating that alkylations on the pyrimidine bases were more resistant to enzymatic hydrolysis with nuclease P1 than the purine alkylated products.  相似文献   

6.
7.
The photoreduction of 2'-7'-dichlorofluorescein (DCF) was investigated in buffer solution using direct electron spin resonance (ESR) and the ESR spin-trapping technique. Anaerobic studies of the reaction of DCF in the presence of reducing agents demonstrated that during visible irradiation (lambda > 300 nm) 2'-7'-dichlorofluorescein undergoes one-electron reduction to produce a semiquinone-type free radical as demonstrated by direct ESR. Spin-trapping studies of incubations containing DCF, 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and either reduced glutathione (GSH) or reduced NADH demonstrate, under irradiation with visible light, the production of the superoxide dismutase-sensitive DMPO/*OOH adduct. In the absence of DMPO, measurements with a Clark-type oxygen electrode show that molecular oxygen is consumed in a light-dependent process. The semiquinone radical of DCF, when formed in an aerobic system, is immediately oxidized by oxygen, which regenerates the dye and forms superoxide.  相似文献   

8.
9.
1. Electron paramagnetic resonance spectroscopy was used to study free-radical signals in freeze-clamped frozen liver tissue from rats after a 1 year period of dietary supplementation with alcohol, iron, or alcohol and iron. In alcohol-fed, iron-fed and alcohol- and iron-fed animals, mild histological damage was seen on light microscopy and evidence of mitochondrial and nuclear injury was identified by electron microscopy. 2. Subcellular fractionation studies showed an increase in the activity of the peroxisomal marker catalase (P < 0.01) in alcohol-fed rats compared with controls, but a fall of 82% (P < 0.001) in alcohol- and iron-fed animals. The activity of the mitochondrial marker succinate dehydrogenase rose by 7% (not significant) in alcohol-fed animals and by 17% (not significant) in iron-fed animals, but fell by 94% (P < 0.001) in alcohol- and iron-fed animals, suggesting serious impairment of mitochondrial function. 3. Iron overload was substantial in the iron-fed animals and there was an excellent correlation between liver iron concentration and iron-derived signals by electron paramagnetic resonance spectroscopy (P < 0.001). A clear free-radical signal of g = 2.003-2.005 was detected in all liver samples, but there was no significant difference in the magnitude of this signal in any study group. 4. The absence of any increase in the stable free-radical signal, even in the presence of considerable hepatic damage, does not support the hypothesis that free radicals mediate alcoholic liver disease in this animal model, although the results cannot be taken as proof against this hypothesis.  相似文献   

10.
p53 is a multifunctional protein that reacts to DNA damage within the cell and regulates the cell growth arrest and/ or apoptotic pathways. However, the mechanism of p53 activation in response to DNA damage is unknown. Recently we have shown that interaction of p53 with sites of DNA damage induces selective proteolytic cleavage of p53, resulting in fragments of 40 and 35 kDa molecular weight. We have also shown that interaction of p53 with single-stranded (ss)DNAs results in a different pattern of selective proteolysis. This interaction gives a novel of 50-kDa protein generated by C-terminal cleavage of the full length protein and released from the p53-ssDNA complexes. Here we discuss a model where p53 responds to the DNA damage by generating different sets of the proteolytic fragments according to the type of the damage.  相似文献   

11.
The genotoxic/mutagenic mechanism(s) of action of fecapentaene-12 (fec-12) is complex but there is evidence to suggest that the generation of active oxygen species (AOS) may be involved. This has been assessed by measuring the formation of 8-hydroxydeoxyguanosine (8-OHdG) in isolated DNA and HeLa cells exposed in vitro to fec-12. The possibility that fec-12 may form AOS via peroxidative 'activation' by prostaglandin H synthase (PHS) has been investigated by measuring 8-OHdG in HeLa cells exposed to fec-12 in the absence or presence of PHS inhibitors. The role of iron as a catalyst in this pathway has also been investigated. A 4-fold increase in the level of 8-OHdG in isolated DNA was seen after exposure to fec-12 (1 mM) alone. This increase was enhanced synergistically by ferrous iron. Fec-12 exposure of HeLa cells at 50 and 100 microM induced 2- and 3-fold increases (P < 0.001) respectively in the level of 8-OHdG in cellular DNA. No increase was seen at 10 microM fec-12. The PHS inhibitors indomethacin and acetylsalicylate blocked the formation of 8-OHdG induced by fec-12 (50 microM) but did not inhibit the formation of 8-OHdG in these cells after exposure to H2O2 and Fe2+. Addition of the iron chelating agent o-phenanthroline to cells prior to fec-12 exposure blocked the increase in 8-OHdG induced by fec-12 (50 microM). Addition of the radical scavenging agent DMSO (10%) to cells prior to fec-12 exposure reduced the level of 8-OHdG to within 10% of control. Specific inhibition of fec-12 induced 8-OHdG formation in HeLa cells by PHS inhibitors suggests that this enzyme may be involved in 'activating' fec-12 to form AOS in cells. Inhibition of fec-12 induced 8-OHdG formation in cells by o-phenanthroline suggests a role for intracellular iron as a catalyst in this process.  相似文献   

12.
A whole body blood flow model (WBBFM) was developed and tested using STELLA II, an icon-driven mathematical simulation software package. The WBBFM uses parallel chambers to represent gray and white areas of the brain, body organs such as lungs, heart (right and left halves), injection site, and blood sampling sites. Input values to the WBBFM include organ blood flows, organ volumes, tissue:blood partition coefficients, injected activity, and data acquisition times for a positron emission tomography (PET) camera. Input variables included an injection function (e.g., bolus), and a blood flow function (e.g., transient variations in flow). The kinetic behavior of [15O]water, a freely diffusible radiotracer employed in PET to characterize blood flow was examined by the WBBFM. The physiologic behavior of water in the human body was emulated using the WBBFM and the model's predictive value was verified by comparing calculated results with the following properties of water: diffusibility, tissue:blood partition coefficient of [15O]water, and the mixing of [15O]water with total body water. The WBBFM simulated Kety's autoradiographic method used in the estimation of regional cerebral blood flow by PET using [15O]water. The application of the model to a cognitive activation study paradigm based on Kety's method is presented and its results compared to published literature data. With appropriate modification in the half-life, tissue:blood partition coefficient, and the amount of administered radioactivity, the WBBFM should prove useful as a tool to examine kinetics of other freely diffusible radiotracers used in PET.  相似文献   

13.
A molecular dynamics simulation has been carried out with DNA polymerase beta (beta pol) complexed with a DNA primer-template. The templating guanine at the polymerase active site was covalently modified by the carcinogenic metabolite of benzo[a]pyrene, (+)-anti-benzo[a]pyrene diol epoxide, to form the major (+)-trans-anti-benzo[a]pyrene diol epoxide covalent adduct. Thus, the benzo[a]pyrenyl moiety (BP) is situated in the single-stranded template at the junction between double- and single-stranded DNA. The starting structure was based on the X-ray crystal structure of the rat beta pol primer-template and ddCTP complex [Pelletier, H., Sawaya, M. R., Kumar, A., Wilson, S. H., and Kraut, J. (1994) Science 264, 1891-1903]. During the simulation, the BP and its attached templating guanine rearrange to form a structure in which the BP is closer to parallel with the adjacent base pair. In addition, the templating attached guanine is displaced toward the major groove side and access to its Watson-Crick edge is partly obstructed. This structure is stabilized, in part, by new hydrogen bonds between the BP and beta pol Asn279 and Arg283. These residues are within hydrogen bonding distance to the incoming ddCTP and templating guanine, respectively, in the crystal structure of the beta pol ternary complex. Site-directed mutagenesis has confirmed their role in dNTP binding, discrimination, and catalytic efficiency [Beard, W. A., Osheroff, W. P., Prasad, R., Sawaya, M. R., Jaju, M., Wood, T. G., Kraut, J., Kunkel, T. A., and Wilson, S. H. (1996) J. Biol. Chem. 271, 12141-12144]. The predominant biological effect of the BP is DNA polymerase blockage. Consistent with this biological effect, the computed structure suggests the possibility that the BP's main deleterious impact on DNA synthesis might result at least in part from its specific interactions with key polymerase side chains. Moreover, relatively modest movement of BP and its attached guanine, with some concomitant enzyme motion, is necessary to relieve the obstruction and permit the observed rare incorporation of a dATP opposite the guanine lesion.  相似文献   

14.
An attempt was made to assign mouse lifespan-associated interstrain differences in DNA repair to a specific chromosomal region using a set of congenic mice. The sensitive 32P-postlabeling assay was employed to measure the removal of benzo[a]pyrene-induced DNA adducts in liver DNA of three different chromosome 4 congenic mouse strains: B6.C-H-15c, B6.C-H-16c, and B6.C-H-26c and the two parental strains, C57B1/6 and BALB/c. The removal of the one main adduct detected, trans-(7R)-N2-[10-(7 beta,8 alpha,9 alpha-trihydroxy)-7,8,9,10- tetrahydrobenzo(a)-pyrene]-yl-deoxyguanosine (BPDE-N2-dG), in liver DNA of C57Bl/6 and BALB/c mice between one and three days after treatment, was approximately 86% and 57%, respectively. The percentage removal of BPDE-N2-dG in two of the three congenic mouse strains, B6.C-H-16c and B6.C-H-26c, resembled that found in BALB/c, whereas the third strain, B6.C-H-15c, removed about the same amount as C57B1/6, i.e., approximately 88% of BPDE-N2-dG between one and three days after treatment. The usefulness of congenic mouse strains for identifying genes putatively involved in aging and/or disease susceptibility is discussed.  相似文献   

15.
DNA-coated Au particles were accelerated by pressurized He gas to supersonic velocities for introduction of a gene into cells. Experimental and theoretical analyses both revealed a heterogeneous distribution of the particles per shot (1 mg Au = 2.4 x 10(7) particles with 2 microg [32P] DNA = 2.5 x 10(11) moles). For introduction of genes into the liver of living rats, the best results were obtained with a newly developed hand-held gene delivery system. The beta-galactosidase gene introduced into rat liver with Au particles by He at 250 psi was expressed (1.2 microunits/microg protein) in a limited area of the liver surface (8 x 8 mm, depth 0.5 mm). When the same gene gun was used on a monolayer of cultured COS7 cells (about 5 microm thick), cells were lost in the central area of heavy bombardment. Cell death caused by influx of Ca2+ was prevented by the use of the cytosol-type culture medium.  相似文献   

16.
17.
Fetal and postnatal ontogenesis of the rat cochlea, from the 16th gestational day (16DG) until 3 months post partum, were studied using scanning electron microscopy with emphasis on the stereocilia during the earliest stages of development. The epithelium of the cochlear duct in 16DG rat consisted of plygonal cells topped with numerous microvilli and one central kinocilium, which form the so-called K?lliker's organ. Inner hair cells (IHCs) appeared at 18DG in the basal cochlea. They were characterized by tufts of cilia of the same height and with a kinocilium. The first outer hair cells (OHCs) can be seen at 20DG. The earliest stages of ciliary differentiation, at 18DG for IHCs and 20DG for OHCs, were similar on both types of cells and were characterized by the presence of round bundles of cilia arising from the surrounding microvilli. A three-dimensional V-shaped organization for OHCs and the linear arrangement for IHCs appeared by the end of the first postnatal week, accompanied by the disappearance of transient cilia on the modiolar side of the hair cell and the kinocilium on the external side. The apical pole of OHCs reached adult-like morphology before that of IHCs. Various links between stereocilia were detected already at birth. Morphometric analysis showed that auditory cells from the base of the cochlea reached adult size by the end of the first postnatal week while those from the apex increased their size later. A review of the literature including comparative observations across species on the ontogenesis of the stereocilia shows that hair cells of the stato-acoustic system may present the same early ontogenesis.  相似文献   

18.
Peptide nucleic acids (PNA) are mimics with normal bases connected to a pseudopeptide chain that obey Watson-Crick rules to form stable duplexes with itself and natural nucleic acids. This has focused attention on PNA as therapeutic or diagnostic reagents. Duplexes formed with PNA mirror some but not all properties of DNA. One fascinating aspect of PNA biochemistry is their reaction with enzymes. Here we show an enzyme reaction that operates effectively on a PNA/DNA hybrid duplex. A DNA oligonucleotide containing a cis, syn-thymine [2+2] dimer forms a stable duplex with PNA. The hybrid duplex is recognized by photolyase, and irradiation of the complex leads to the repair of the thymine dimer. This finding provides insight into the enzyme mechanism and provides a means for the selective repair of thymine photodimers.  相似文献   

19.
A novel entry to tropane analogs of cocaine was developed based on the reaction of rhodium-stabilized vinylcarbenoids with pyrroles. These analogs were tested in binding to dopamine, serotonin (5-HT), and norepinephrine transporters in membranes from rat striatum and frontal cortex. In all the analogs, the aryl group at the 3 position was directly bound to the tropane ring and an ethyl ketone moiety was present at the 2 position. By appropriate modification of the aryl and nitrogen substituents, highly potent and 5-HT selective tropanes were prepared. The most potent and selective compound was 3 beta-[4-(1-methylethenyl)phenyl]-2 beta-propanoyl-8-azabicyclo[3.2.1]octane (13b) which had a Ki of 0.1 nM at 5-HT transporters and was 150 times more potent at 5-HT vs dopamine transporters and almost 1000 times more potent at 5-HT vs norepinephrine transporters.  相似文献   

20.
Astrocytes play a pivotal role in cerebral glutamate homeostasis. After 90 minutes of middle cerebral artery occlusion in the rat, the changes induced in neuronal and astrocytic metabolism and in the neuronal-astrocytic interactions were studied by combining in vivo injection of [1-13C]glucose and [1,2-13C]acetate with ex vivo 13C nuclear magnetic resonance spectroscopy and HPLC analysis of amino acids of the lateral caudoputamen and lower parietal cortex, representing the putative ischemic core, and the upper frontoparietal cortex, corresponding to the putative penumbra. In the putative ischemic core, evidence of compromised de novo glutamate synthesis located specifically in the glutamatergic neurons was detected, and a larger proportion of glutamate was derived from astrocytic glutamine. In the same region, pyruvate carboxylase activity, representing the anaplerotic pathway in the brain and exclusively located in astrocytes, was abolished. However, astrocytic glutamate uptake and conversion to glutamine took place, and cycling of intermediates in the astrocytic tricarboxylic acid cycle was elevated. In the putative penumbra, glutamate synthesis was improved compared with the ischemic core, the difference appeared to be brought on by better neuronal de novo glutamate synthesis, combined with normal levels of glutamate formed from astrocytic glutamine. In both ischemic regions, gamma-aminobutyric acid synthesis directly from glucose was reduced to about half, indicating impaired pyruvate dehydrogenase activity; still, gamma-aminobutyric acid reuptake and cycling was increased. The results obtained in the current study demonstrate that by combining in vivo injection of [1-13C]glucose and [1,2-13C]acetate with ex vivo 13C nuclear magnetic resonance spectroscopy, specific metabolic alterations in small regions within the rat brain suffering a focal ischemic lesion can be studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号