首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
为探究海峡特长铁路隧道疏散设施对人员疏散时间的影响,利用 Pathfinder 人员疏散模拟软件分别以横通道宽度、横通道间距、疏散通道宽度和疏散人数为变量,对不同变量影响下人员疏散时间的变化趋势进行分析。结果表明,横通道宽度对人员疏散时间的影响以 2 m 为分界,呈现阶段性差异的特征;人员疏散时间与横通道间距线性相关;疏散通道宽度和疏散人员荷载与疏散用时的关系分别为幂指数关系和二次函数增长关系。建议特长铁路隧道疏散系统设计时,应兼顾工程施工建设和后期运营管理,并有针对性地开展疏散系统参数评估。  相似文献   

2.
以火灾工况下人员安全疏散作为控制标准,同时考虑高海拔对烟雾扩散以及人员逃生速度、心理等因素的影响,建立随机停车最不利工况下火灾计算模型以及人员逃生计算模型,分别计算人员逃生可用安全疏散时间及必需安全疏散时间,研究海拔超过3 500 m单洞+服务隧道满足乘车人员全部安全逃生的最佳横通道间距。计算结果表明:在高海拔地区隧道内列车发生火灾且随机停车模式下,将计算所得人员逃生可用时间与人员逃生必需时间进行对比,为保证人员疏散安全,此类铁路隧道横通道间距应250 m设置一道。计算结果可为类似高海拔隧道横通道间距设计提供参考。  相似文献   

3.
为了确定高海拔环境下特长公路隧道的服务隧道防烟通风策略及人员疏散通道最佳间距,采用FDS和Pathfinder建立了主隧道+服务隧道的通风排烟及人员疏散仿真模拟平台,分析50 MW火灾规模下隧道内烟气运动规律及人员疏散过程,基于克拉尼公式和FED准则综合判定ASET(可用安全疏散时间)。针对低氧气环境下人员运动效率低下的这一背景情况,对人员疏散速度进行折减,进一步确定RSET(必须安全疏散时间)。结果表明:服务隧道内纵向风速1.6 m/s可保证服务隧道内1 200 s时间范围内无烟,考虑高海拔地区火灾增长系数的折减,人员可用安全疏散时间呈现为“W”形,下游200 m处可用安全疏散时间最少,结合人员必须安全疏散时间分析,人行通道间距宜设置为200 m。  相似文献   

4.
基于FDS和FDS+Evac软件对城市铁路隧道火灾情况下人员疏散及横向通道设置进行研究。应用FDS软件建立地下铁路隧道模型,对火灾场景进行数值模拟,确定了可用安全疏散时间(ASET)。利用FDS+Evac软件对不同横向通道条件下的人员疏散进行模拟和分析,确定必需安全疏散时间(RSET)。通过对比分析,确定了在最不利火灾条件下保证人员安全疏散的横通道设置方案。设置方案对于工程上同类型铁路隧道的横向通道设计具有一定的参考价值。  相似文献   

5.
城市水底隧道通常采用平行于主隧道的安全通道来解决,安全通道可以是相邻行车隧道,也可以采用辅助导洞隧道以及内部专用安全通道,主隧道与安全通道之间采用疏散门(口)或者横通道进行水平或垂直连接,其间距大小对人员安全疏散有较大影响,疏散演习可以为确定这一间距大小提供理论依据.  相似文献   

6.
针对城市隧道横纵向通道组合疏散方式,使用Pathfinder疏散模拟软件搭建疏散模型,计算得到疏散运动时间、各通道占用时间。并结合现场试验,分析较大通过能力的横通道对附近疏散滑梯/楼梯的影响,进一步探索不同疏散模式给人员疏散带来的影响变化。研究表明:与横向疏散相比,横纵向结合的疏散方式可以在保证疏散效率的同时,增大横通道间距,减少施工风险和成本;相比仅设置纵向疏散,增设横通道后可使大部分场景下的疏散时间缩短,且横纵向结合疏散对特殊人群更加友好,具有更强的人员疏散普适性;疏散人员附近各通道的通过能力差异会影响人员对通道的倾向性,导致通道占用时间的差异,可采用应急广播等方式进行疏散引导。  相似文献   

7.
为了确定长大铁路隧道紧急出口设置的最大间距,采用对列车运行时火灾车厢中人员疏散进行了现场试验和仿真计算,并对车厢内混合人群疏散和火灾烟流扩散进行数值模拟的方法得到火灾车厢内的人员必需安全疏散时间和可用安全疏散时间,从而确定了列车发生火灾后最大运行时间为275 s。根据火灾列车运行时速为80 km/h,火灾列车可运行6 km,即长大铁路隧道紧急出口设置间距最大为6 km。  相似文献   

8.
以济南黄河公轨合建隧道为研究对象,分别对公路隧道和轨道交通发生火灾时,纵向疏散楼梯和横向疏散门的间距对人员疏散时间的影响进行分析,获得必需疏散时间。结果表明:疏散楼梯间距为60 m和75 m时,均满足安全疏散要求;轨道交通发生火灾,在通风有效情况下,人员可用安全疏散时间TASET为2 700 s;疏散门间距为150 m和300 m时,均满足安全疏散要求。从安全和运行成本考虑,推荐疏散楼梯间距设置为75 m、下层疏散门间距设置为300 m。  相似文献   

9.
上海市域高速铁路为城际列车和地铁列车共线运行的运营模式,通过数值模拟得到不同通风方式、火源位置、疏散口间距下的人员可用安全疏散时间和必需安全疏散时间,分析人员疏散安全性,为安全疏散设施设置方案提供决策依据。结果表明:地铁列车火灾比城际列车火灾更危险;火灾发生时列车火源位置应尽量停靠在两疏散口之间,且隧道内进行通风排烟;疏散口间距设置为300 m满足城际列车和地铁列车人员安全疏散要求。  相似文献   

10.
以某海底特长公路隧道工程为实例,设置50 MW火灾的场景,通风风速为1.0、2.0 m/s,利用FDS对火灾发展状况进行模拟,利用Pathfinder对竖向疏散和横向竖向相结合两种疏散方式进行研究。通过对比安全疏散时间发现:两种疏散方案均能满足人员安全疏散要求;设置竖向疏散并增加两条及以上横通道可一定程度上提高人员的疏散效率,但增设一条横通道疏散效率仅能提升2.1%,采用竖向疏散方式完全满足人员安全疏散要求。考虑到水下盾构隧道设置横通道的施工风险,建议采用竖向疏散方式。  相似文献   

11.
研究地铁隧道人员安全疏散可靠度,为安全疏散设施设置提供决策依据。采用FDS 建立某隧道列车火灾模型,研究不同排烟模式下列车中部火灾人员可用安全疏散时间。采用Pathfinder 软件模拟不同疏散场景下的人员疏散过程,获得人员必需安全疏散时间。采用SPSS 软件进行正态分布分析,计算不同疏散场景下的人员安全疏散可靠度。结果表明:采用纵向通风排烟可有效提高人员安全疏散可靠度,在火源位于疏散口中间和疏散口处时,可分别提高82.48%和86.62%;相同疏散条件下,人员疏散可靠度随火源功率以及疏散口间距的增大而减小,而疏散门宽度对人员疏散可靠度几乎无影响。  相似文献   

12.
随着20 km以上的长大铁路隧道及隧道群数量的不断增加,其防灾救援问题日益引起人们的关注。为获得长大铁路隧道及隧道群救援设施的规划方案,在对国内外长大铁路隧道及隧道群进行大量调研的基础上,按列车停车安全距离、火源长度和火灾烟气影响范围将铁路隧道群进行了细化。定义相邻隧道洞口间距小于250 m的铁路隧道为毗邻铁路隧道群,其紧急救援站设置主要考虑隧道内的紧急疏散通道、排烟、站台的加宽和洞口段的扩大;相邻隧道洞口间距在250~400 m的铁路隧道为连续隧道群,不设置紧急救援站;相邻隧道洞口间距大于400 m的铁路隧道为单体铁路隧道,其紧急救援站设置考虑横通道设置和洞内排烟模式。  相似文献   

13.
为了研究城市综合管廊火灾特性和人员疏散安全性,采用数值模拟的方法,分析了管廊电缆火灾规模、烟气流动特性,研究人员疏散的安全性。结果表明,火源位于电力舱中部时,火灾规模最大,约为 2.5 MW;人员可用安全疏散时间为 240 s,可以安全逃生。  相似文献   

14.
城市水下公路隧道火灾时人员安全疏散   总被引:1,自引:1,他引:0  
以长沙市某水下公路隧道为研究对象,介绍隧道火灾时人员安全疏散准则及影响因素.设定火灾场景和疏散场景,分别利用FDS 5.3.0和EVACNET4模拟各火灾场景下的烟气蔓延及人员疏散,得到各种火灾场景下隧道内的可用安全疏散时间曲线和必需安全疏散时间曲线,分析不同火灾场景下人员疏散的安全性.在消防设施正常工作的情况下隧道内人员能够安全疏散,应加强消防设施的日常维护.  相似文献   

15.
为研究公路隧道突发火灾事故下滞留人员的密度与疏散时间,结合火灾应急响应时间与处置要求,引入交通波传播理论,考虑交通流状态、人员组成、车辆组成等因素,提出滞留人员密度计算方法,并以人员密度、大巴车疏散时间等为参数,构建人员疏散时间预测模型,分析不同交通流条件下的疏散时间,通过实例计算与数值仿真,验证了模型的有效性。结果表明:基于交通波理论提出的滞留人员密度计算方法,能准确地计算出隧道突发火灾事故后的人员密度分布,符合真实场景中的非均匀分布特征;采用人员疏散时间预测模型,能快速预测公路隧道人员疏散所需时间,预测结果与仿真结果基本一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号