首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents a method to decompose multichannel long-term intramuscular electromyogram (EMG) signals. In contrast to existing decomposition methods which only support short registration periods or single-channel recordings of signals of constant muscle effort, the decomposition software EMG-LODEC (ElectroMyoGram LOng-term DEComposition) is especially designed for multichannel long-term recordings of signals of slight muscle movements. A wavelet-based, hierarchical cluster analysis algorithm estimates the number of classes [motor units (MUs)], distinguishes single MUAPs from superpositions, and sets up the shape of the template for each class. Using three channels and a weighted averaging method to track action potential (AP) shape changes improve the analysis. In the last step, nonclassified segments, i.e., segments containing superimposed APs, are decomposed into their units using class-mean signals. Based on experiments on simulated and long-term recorded EMG signals, our software is capable of providing reliable decompositions with satisfying accuracy. EMG-LODEC is suitable for the study of MU discharge patterns and recruitment order in healthy subjects and patients during long-term measurements.  相似文献   

2.
The shapes and firing rates of motor unit action potentials (MUAPs) in an electromyographic (EMG) signal provide an important source of information for the diagnosis of neuromuscular disorders. In order to extract this information from EMG signals recorded at low to moderate force levels, it is required: i) to identify the MUAPs composing the EMG signal, ii) to classify MUAPs with similar shape, and iii) to decompose the superimposed MUAP waveforms into their constituent MUAPs. For the classification of MUAPs two different pattern recognition techniques are presented: i) an artificial neural network (ANN) technique based on unsupervised learning, using a modified version of the self-organizing feature maps (SOFM) algorithm and learning vector quantization (LVQ) and ii) a statistical pattern recognition technique based on the Euclidean distance. A total of 1213 MUAPs obtained from 12 normal subjects, 13 subjects suffering from myopathy, and 15 subjects suffering from motor neuron disease were analyzed. The success rate for the ANN technique was 97.6% and for the statistical technique 95.3%. For the decomposition of the superimposed waveforms, a technique using crosscorrelation for MUAP's alignment, and a combination of Euclidean distance and area measures in order to classify the decomposed waveforms is presented. The success rate for the decomposition procedure was 90%  相似文献   

3.
Simulation Techniques in Electromyography   总被引:4,自引:0,他引:4  
A motor unit action potential (MUAP) recorded in clinical electromyography (EMG) is the spatial and temporal summation of the action potentials (AP's) from all muscle fibers in a motor unit (MU). An important determinant of MUAP waveform characteristics is the size of the recording electrode. In this paper, we have described the use of a modified line source model of single muscle fiber action potentials to simulate MUAP's as recorded by single fiber (SF) EMG, concentric needle (CN) EMG, and macro-EMG electrodes. Results indicate that SFEMG recordings from a normal MU contain mainly the AP's of the closest one to three muscle fibers of the MU. The amplitude, area, and duration of the simulated CNEMG MUAP's are determined mainly by the number and size of muscle fibers within a semicircular territory of 0.5, 1.5, and 2.5 mm, respectively, around the tip of the electrode. The amplitude and area of simulated macro-EMG MUAP's increase with the number of muscle fibers in the MU.  相似文献   

4.
This study introduces the application of nonlinear spatial filters to help identify single motor unit discharge from multiple channel surface electromyogram (EMG) signals during low force contractions. The nonlinear spatial filters simultaneously take into account the instantaneous amplitude and frequency information of a signal. This property was used to enhance motor unit action potentials (MUAPs) in the surface EMG record. The advantages of nonlinear spatial filtering for surface MUAP enhancement were investigated using both simulation and experimental approaches. The simulation results indicate that when compared with various linear spatial filters, nonlinear spatial filtering achieved higher SNR and higher kurtosis of the surface EMG distribution. Over a broad range of SNR and kurtosis levels for the input signal, nonlinear spatial filters achieved at least 32 times greater SNR and 11% higher kurtosis for correlated noise, and at least 15 times greater SNR and 1.7 times higher kurtosis for independent noise, across electrode array channels. The improvements offered by nonlinear spatial filters were further documented by applying them to experimental surface EMG array recordings. Compared with linear spatial filters, nonlinear spatial filters achieved at least nine times greater SNR and 25% higher kurtosis. It follows that nonlinear spatial filters represent a potentially useful supplement to linear spatial filters for detection of motor unit activity in surface EMG at low force contractions.  相似文献   

5.
This paper presents two probabilistic developments for the use with electromyograms (EMGs). First described is a neuroelectric interface for virtual device control based on gesture recognition. The second development is a Bayesian method for decomposing EMGs into individual motor unit action potentials (MUAPs). This Bayesian decomposition method allows for distinguishing individual muscle groups with the goal of enhancing gesture recognition. All examples presented rely upon sampling EMG data from a subject's forearm. The gesture-based recognition uses pattern recognition software that has been trained to identify gestures from among a given set of gestures. The pattern recognition software consists of hidden Markov models, which are used to recognize the gestures as they are being performed in real time from moving averages of EMGs. Two experiments were conducted to examine the feasibility of this interface technology. The first replicated a virtual joystick interface, and the second replicated a keyboard. Moving averages of EMGs do not provide an easy distinction between fine muscle groups. To better distinguish between different fine motor skill muscle groups, we present a Bayesian algorithm to separate surface EMGs into representative MUAPs. The algorithm is based on differential variable component analysis, which was originally developed for electroencephalograms. The algorithm uses a simple forward model representing a mixture of MUAPs as seen across multiple channels. The parameters of this model are iteratively optimized for each component. Results are presented on both synthetic and experimental EMG data. The synthetic case has additive white noise and is compared with known components. The experimental EMG data were obtained using a custom linear electrode array designed for this study.  相似文献   

6.
The electromyographic (EMG) signal provides information about the performance of muscles and nerves. At any instant, the shape of the muscle signal, motor unit action potential (MUAP), is constant unless there is movement of the position of the electrode or biochemical changes in the muscle due to changes in contraction level. The rate of neuron pulses, whose exact times of occurrence are random in nature, is related to the time duration and force of a muscle contraction. The EMG signal can be modeled as the output signal of a filtered impulse process where the neuron firing pulses are assumed to be the input of a system whose transfer function is the motor unit action potential. Representing the neuron pulses as a point process with random times of occurrence, the higher order statistics based system reconstruction algorithm can be applied to the EMG signal to characterize the motor unit action potential. In this paper, we report results from applying a cepstrum of bispectrum based system reconstruction algorithm to real wired-EMG (wEMG) and surface-EMG (sEMG) signals to estimate the appearance of MUAPs in the Rectus Femoris and Vastus Lateralis muscles while the muscles are at rest and in six other contraction positions. It is observed that the appearance of MUAPs estimated from any EMG (wEMG or sEMG) signal clearly shows evidence of motor unit recruitment and crosstalk, if any, due to activity in neighboring muscles. It is also found that the shape of MUAPs remains the same on loading.  相似文献   

7.
The leading edge, terminal wave, and slow afterwave of the motor-unit action potential (MUAP) are produced by changes in the strength of electrical sources in the muscle fibers rather than by movement of sources. The latencies and shapes of these features are, therefore, determined primarily by the motor-unit (MU) architecture and the intracellular action potential (IAP), rather than by the volume-conduction characteristics of the limb. We present a simple model to explain these relationships. The MUAP is modeled as the convolution of a source function related to the IAP and a weighting function related to the MU architecture. The IAP waveform is modeled as the sum of a spike and a slow repolarization phase. The MU architecture is modeled by assuming that the individual fibers lie along a single equivalent axis but that their action potentials have dispersed initiation and termination times. The model is illustrated by simulating experimentally recorded MUAPs and compound muscle action potentials.  相似文献   

8.
The contribution of motor unit action potential trains (MUAPT) of distinct motor units (MU) to the crosscorrelation function between myoelectric signals (MES) recorded at the skin surface is studied. In specific, the significance of the correlation between the firing activity of concurrently active MUs (which results in cross-terms in the overall correlation function) is compared to the representation obtained using the contributions of single MUs at each recording site (auto-terms). A model for the generation of surface MUAPs is combined with the generation of MU firing statistics in order to obtain surface MUAPTs. MU firing statistics are simulated to incorporate MU synchronization levels reported in the literature. Alternatively, experimental firing statistics are fed to the model generating the MUAPTs. The contribution of individual MU pairs to the global myoelectric signal correlation function is assessed. Results indicate that the cross-terms from different MUs decrease steadily contributing very little to the overall correlation for record lengths as short as 30 s. Thus, the error expected when computing the crosscorrelation function between two channels of MES as the superposition of the auto-terms contributed by single MUs (i.e., ignoring the cross-terms from different MUs) is shown to be very small.  相似文献   

9.
Artificial neural network (ANN) based signal processing methods have been shown to have significant robustness in processing complex, degraded, noisy, and unstable signals. A novel approach to automated electromyogram (EMG) signal decomposition, using an ANN processing architecture, is presented here. Due to the lack of a priori knowledge of motor unit action potential (MUAP) morphology, the EMG decomposition must be performed in an unsupervised manner. An ANN classifier, consisting of a multilayer perceptron neural network and employing a novel unsupervised training strategy, is proposed. The ANN learns repetitive appearances of MUAP waveforms from their suspected occurrences in a filtered EMG signal in an autoassociative learning task. The same training waveforms are fed into the trained ANN and the output of the ANN is fed back to its input, giving rise to a dynamic retrieval net classifier. For each waveform in the data, the network discovers a feature vector associated with that waveform. For each waveform, classification is achieved by comparing its feature vector with those of the other waveforms. Firing information of each MUAP is further used to refine the classification results of the ANN classifier. Then, individual MUAP waveform shapes are derived and their firing tables are created  相似文献   

10.
The speed of propagation of an action potential along a muscle fiber, its conduction velocity (CV), can be used as an indication of the physiological or pathological state of the muscle fiber membrane. The motor unit action potential (MUAP), the waveform resulting from the spatial and temporal summation of the individual muscle fiber action potentials of that motor unit (MU), propagates with a speed referred to as the motor unit conduction velocity (MUCV). This paper introduces a new algorithm, the MU tracking algorithm, which estimates MUCVs and MUAP amplitudes for individual MUs in a localized MU population using SEMG signals. By tracking these values across time, the electrical activity of the localized MU pool can be monitored. An assessment of the performance of the algorithm has been achieved using simulated SEMG signals. It is concluded that this analysis technique enhances the suitability of SEMG for clinical applications and points toward a future of noninvasive diagnosis and assessment of neuromuscular disorders.  相似文献   

11.
We present a novel method for extracting and classifying motor unit action potentials (MUAPs) from one-channel electromyographic recordings. The extraction of MUAP templates is carried out using a symbolic representation of waveforms, a common technique in signature verification applications. The assignment of MUAPs to their specific trains is achieved by means of repeated template matching passes using pseudocorrelation, a new matched-filter-based similarity measure. Identified MUAPs are peeled off and the residual signal is analyzed using shortened templates to facilitate the resolution of superimpositions. The program was tested with simulated data and with experimental signals obtained using fine-wire electrodes in the biceps brachii during isometric contractions ranging from 5% to 30% of the maximum voluntary contraction. Analyzed signals were made of up to 14 MUAP trains. Most templates were extracted automatically, but complex signals sometimes required the adjustment of 2 parameters to account for all the MUAP trains present. Classification accuracy rates for simulations ranged from an average of 96.3% +/- 0.9% (4 trains) to 75.6% +/- 11.0% (12 trains). The classification portion of the program never required user intervention. Decomposition of most 10-s-long signals required less than 10 s using a conventional desktop computer, thus showing capabilities for real-time applications.  相似文献   

12.
This paper presents a novel method, which aims at resolving difficult superimpositions of motor unit action potentials (MUAPs) obtained from single-channel intramuscular electromyographic recordings. Resolution is achieved by means of a genetic algorithm (GA) combined with a gradient descent method. This dual optimization scheme has been tested by means of simulations of isolated superimpositions involving two to six MUAPs, along with simulated extended signals of 10-s duration where the density reached 300 MUAPs/s. Of the hundreds of isolated superimpositions tested, more than 90% of the MUAPs were positively identified. With extended signals, identification rates of better than 85% were obtained. The GA alone accounted for up to an 8% improvement over the decomposition conducted using only template matching.  相似文献   

13.
A procedure for the storage and documentation of myoelectric signals has been developed that consists of a selective needle signal detection protocol, a data collection-compression routine, an adaptive signal decomposition algorithm, and an error filter. The collection-compression routine stores only fixed-length signal epochs that contain motor unit action potentials (MUAPs) detected during individual motor unit firings. The decomposition algorithm assigns the collected MUAPs to candidate motor units, based on template matching using power-spectrum domain features and firing-time criteria calculated from the motor units' firing statistics. Power spectrum features allow the use of Nyquist sampling rates and remove the need for template alignment. The algorithm is adaptive and attempts to minimize dependent errors. The error filter, using firing statistics, accounts for unresolved superpositions and other decomposition errors. Using a standard TECA single-fiber needle electrode, signal recorded during isometric, constant, or slow force-varying contractions of up to 50% of the maximal voluntary contraction level, have been successfully analyzed  相似文献   

14.
This paper presents a new algorithm for optimal adaptation of the signal templates of a matched filter bank used in the detection of the motor unit action potential waveforms (abbreviated as MUAP's) in an electromyogram (EMG). It is of interest, for clinical diagnosis and therapy, to detect as many MUAP's as possible in a single measurement, and to determine for each motor unit the repetition. rate of its respective MUAP. For this purpose, we have developed a computer program which, in addition to other subprograms, contains the adaptive filter bank mentioned above. The templates in this fllter bank have to be adapted to nonpredetermined changes in measurement conditions such as the movement of the needle electrode inserted in the muscle. In the present paper, the above templates are estimated by means of a "tumbling algorithm," so called because the successive MUAP's from a given motor unit are used as noisy data vectors in a time-varying Kalman filter-predictor framework, which alternately estinates their evolving shapes and identifies the time-varying parameters of the model generating them. The algorithm has been applied with success to synthetic and real EMG data.  相似文献   

15.
Physiologically based simulation of clinical EMG signals   总被引:1,自引:0,他引:1  
An algorithm that generates electromyographic (EMG) signals consistent with those acquired in a clinical setting is described. Signals are generated using a model constructed to closely resemble the physiology and morphology of skeletal muscle, combined with line source models of commonly used needle electrodes positioned in a way consistent with clinical studies. The validity of the simulation routines is demonstrated by comparing values of statistics calculated from simulated signals with those from clinical EMG studies of normal subjects. The simulated EMG signals may be used to explore the relationships between muscle structure and activation and clinically acquired EMG signals. The effects of motor unit (MU) morphology, activation, and neuromuscular junction activity on acquired signals can be analyzed at the fiber, MU and muscle level. Relationships between quantitative features of EMG signals and muscle structure and activation are discussed.  相似文献   

16.
Many spatial filters have been proposed for surface electromyographic (EMG) signal detection. Although theoretical and modeling predictions on spatial selectivity are available, there are no extensive experimental validations of these techniques based on single motor unit (MU) activity detection. The aim of this study was to compare spatial selectivity of one- and two-dimensional (1-D and 2-D) spatial filters for EMG signal detection. Intramuscular and surface EMG signals were recorded from the tibialis anterior muscle of ten subjects. The simultaneous use of intramuscular wire and surface recordings (with the spike triggered averaging technique) allowed investigation of the activity of single MUs at the skin surface. The surface EMG signals were recorded with a grid of point electrodes (3 x 3 electrodes) and a ring electrode system at 15 locations over the muscle, with the wires detecting signals from the same intramuscular location. For most subjects, it was possible to classify, from the intramuscular recordings, the activity of the same MUs for all the contractions. The surface EMG signals were averaged with the intramuscularly detected MU action potentials as triggers. In this way, eight spatial filters--longitudinal and transversal, single and double differential (LSD, TSD, LDD, TDD), Laplacian (NDD), inverse binomial filter of the second order (IB2), inverse rectangle filter (IR), and differential ring system (C1)--could be compared on the basis of their spatial selectivity. The distance from the source (transversal with respect to the muscle fiber orientation) after which the surface detected potential did not exceed +/- 5% of the maximal peak-to-peak amplitude (detection distance) was statistically smaller for the 2-D systems and TDD than for the other filters. The MU action potential duration was significantly shorter with LDD and with the 2-D systems than with the other filters. The 2-D filters investigated (including C1) showed very similar performance and were, thus, considered equivalent from the point of view of spatial selectivity.  相似文献   

17.
In this study, power spectral density functions (PSDF's) were computed of interference EMG of various facial and jaw-elevator muscles during nonfatiguing submaximal static contractions, recorded with surface electrodes. A distinct peak was found in the PSDF's in the frequency region below 40 Hz. It was shown that the peak was due to genuine EMG activity and that it could not be considered as an artifact, which was caused by electrode displacements during contraction. An increase of contraction strength resulted in a shift of the peak to higher frequencies and a decrease of peak amplitude relative to the power spectral estimates above 40 Hz, which were shown to be determined by the shape of the motor unit (MU) action potentials. In accordance with mathematical models of the EMG PSDF, it was demonstrated that the peak indicates the dominant firing rate of the sampled MU's. Our results suggest that this can be defined as the firing rate of the first recruited low-threshold MU's, which may be expected to dominate the interference EMG signal because of their preponderance in number. The data further suggest that the peak can be more readily observed in PSDF's of facial and jaw-elevator muscles than in PSDF's of limb muscles. This might be related to differences in MU firing statistics.  相似文献   

18.
Time-scale analysis of motor unit action potentials   总被引:1,自引:0,他引:1  
Quantitative analysis in clinical electromyography (EMG) is very desirable because it allows a more standardized, sensitive and specific evaluation of the neurophysiological findings, especially for the assessment of neuromuscular disorders. Following the recent development of computer-aided EMG equipment, different methodologies in the time domain and frequency domain have been followed for quantitative analysis. In this study, the usefulness of the wavelet transform (WT), that provides a linear time-scale representation is investigated, for describing motor unit action potential (MUAP) morphology. The motivation behind the use of the WT is that it provides localized statistical measures (the scalogram) for nonstationary signal analysis. The following four WT's were investigated in analyzing a total of 800 MUAP's recorded from 12 normal subjects, 15 subjects suffering with motor neuron disease, and 13 from myopathy: Daubechies with four and 20 coefficients, Chui (CH), and Battle-Lemarie (BL). The results are summarized as follows: 1) most of the energy of the MUAP signal is distributed among a small number of well-localized (in time) WT coefficients in the region of the main spike, 2) for MUAP signals, we look to the low-frequency coefficients for capturing the average waveshape of the MUAP signal over long durations, and we look to the high-frequency coefficients for locating MUAP spike changes, 3) the Daubechies 4 wavelet, is effective in tracking the transient components of the MUAP signal, 4) the linear spline CH (semiorthogonal) wavelet provides the best MUAP signal approximation by capturing most of the energy in the lowest resolution approximation coefficients, and 5) neural network DY (DY) of Daubechies 4 and BL WT coefficients was in the region of 66%, whereas DY for the empirically determined time domain feature set was 78%. In conclusion, wavelet analysis provides a new way in describing MUAP morphology in the time-frequency plane. This method allows for the fast extraction of localized frequency components, which when combined with time domain analysis into a modular neural network decision support system enhances further the DY to 82.5% aiding the neurophysiologist in the early and accurate diagnosis of neuromuscular disorders.  相似文献   

19.
Decomposition of multiunit electromyographic signals   总被引:5,自引:0,他引:5  
We have developed a comprehensive technique to identify single motor unit (SMU) potentials and to decompose overlapped electromyographic (EMG) signals into their constituent SMU potentials. This technique is based on one-channel EMG recordings and is easily implemented for many clinical EMG tests. There are several distinct features of our technique: 1) it measures waveform similarity of SMU potentials in the wavelet domain, which gives this technique significant advantages over other techniques; 2) it classifies spikes based on the nearest neighboring algorithm, which is less sensitive to waveform variation; 3) it can effectively separate compound potentials based on a maximum signal energy deduction algorithm, which is fast and relatively reliable; and 4) it also utilizes the information on discharge regularities of SMU's to help correct possible decomposition errors. The performance of this technique has been evaluated by using simulated EMG signals composed of up to eight different discharging SMU's corrupted with white noise, and also by using real EMG signals recorded at levels up to 50% maximum voluntary contraction. We believe that it is a very useful technique to study SMU discharge patterns and recruitment of motor units in patients with neuromuscular disorders in clinical EMG laboratories.  相似文献   

20.
A coefficient for quantifying the shape irregularities of the motor unit action potential (MUAP) is introduced. This coefficient is defined as the “length” of action potential curve normalized by the signal's amplitude in such a way that it is independent on duration and amplitude. It characterizes only the MUAP shape. The irregularity coefficient may be used to measure the deviations of the potential from the normal MUAP. The properties of this coefficient and its relation to the conventional parameters describing MUAP shape, viz. The number of phases and turns is discussed. The examples of classification of real signals according to this coefficient are presented  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号