首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermodynamic modeling of the Al-Ca-Sr, Mg-Ca-Sr, Mg-Al-Ca and Mg-Al-Sr systems was conducted using the modified quasichemical model. A self-consistent database has been established for these systems. Mg-Al-Ca and Mg-Al-Sr ternary systems were studied experimentally through microstructure characterization, phase identification, and thermal analysis and thermodynamic modeling based on these experimental findings. It has been observed that the intermetallic compounds in the Mg-Ca, Mg-Sr, Al-Ca, and Al-Sr binary systems dissolve the third component in the respective ternary phase diagrams. In addition, two ternary compounds, Mg56Al40Sr4 and Mg2Al4Ca3, have been reported.  相似文献   

2.
3.
A thermodynamic optimization of the boron-cobalt-iron ternary system is performed based on thermodynamic models of the three constitutional binary systems and the experimental data on phase diagrams and thermodynamic properties of the ternary system. The liquid, fcc_A1, bcc_A2 and hcp_A3 solution phases are described by the substitutional solution model. The three intermediate line compounds, (Co,Fe)B, (Co,Fe)2B and (Co,Fe)3B, are described by the two sublattice model. A set of thermodynamic parameters are obtained. The calculated phase diagram and thermodynamic properties are in reasonable agreement with most of the experimental data.  相似文献   

4.
The binary Gd-Li and the ternary Gd-Li-Mg systems were studied experimentally by thermal analysis and phase equilibration and also by thermodynamic calculations using the CALPHAD method. Ternary phase equilibria at 250 °C were studied with 55 different alloys that were annealed for 400 h and analyzed by x-ray diffractometry. A thermodynamic assessment of the binary Gd-Li system was also performed and the calculated phase diagram is presented. In the Gd-Li-Mg system, ternary solubilities of Li in GdMg (up to 5 at.% Li), GdMg2 (up to approximately 3 at.% Li), and GdMg3 (up to 5 at.% Li) were found at 250 °C. No ternary compound was observed. Lattice parameters for different compositions are given for these phases. Thermal analysis using a ternary key sample of composition near the invariant reaction L′=L+(βGd)+GdMg provided the data that were needed to determine a thermodynamic parameter for the ternary liquid. Thermodynamic data sets for the ternary solid solution phases were also developed. Based on the present data sets and those of the binary Gd-Mg and Li-Mg systems from the literature, the phase equilibria in the entire ternary system were calculated. Isothermal and vertical sections of the phase diagram and the projection of the liquidus surface are shown. These calculated phase diagrams are well supported by the experimental data.  相似文献   

5.
The binary Gd-Li and the ternary Gd-Li-Mg systems were studied experimentally by thermal analysis and phase equilibration and also by thermodynamic calculations using the CALPHAD method. Ternary phase equilibria at 250 °C were studied with 55 different alloys that were annealed for 400 h and analyzed by x-ray diffractometry. A thermodynamic assessment of the binary Gd-Li system was also performed and the calculated phase diagram is presented. In the Gd-Li-Mg system, ternary solubilities of Li in GdMg (up to 5 at.% Li), GdMg2 (up to approximately 3 at.% Li), and GdMg3 (up to 5 at.% Li) were found at 250 °C. No ternary compound was observed. Lattice parameters for different compositions are given for these phases. Thermal analysis using a ternary key sample of composition near the invariant reaction L′=L+(βGd)+GdMg provided the data that were needed to determine a thermodynamic parameter for the ternary liquid. Thermodynamic data sets for the ternary solid solution phases were also developed. Based on the present data sets and those of the binary Gd-Mg and Li-Mg systems from the literature, the phase equilibria in the entire ternary system were calculated. Isothermal and vertical sections of the phase diagram and the projection of the liquidus surface are shown. These calculated phase diagrams are well supported by the experimental data.  相似文献   

6.
Two new ternary complexes of 1-(2-thienyl)-3-(p-phenylethynylphenyl)-1,3-propanedione (HTPP) and 1,10-phenanthroline (phen) with Sm3+ and Dy3+ were synthesized. The composition of the ternary complexes was characterized as Sm(TPP)3phen and Dy(TPP)3phen, respectively, by infrared (IR) spectra, chemical analysis, elemental analysis, and thermodynamic analysis. At room temperature, under UV light excitation, the Sm3+ and Dy3+ complexes exhibit characteristic emissions of the central ions. It is found that the fluorescence intensity of Sm(TPP)3phen is stronger than that of Dy(TPP)3phen. In order to explain this phenomenon, an accurate quantum chemistry calculation was carried out, and the result is in good agreement with the experiment data.  相似文献   

7.
The phase equilibria of the Co-Cu-V ternary system at 900, 1000, 1100 and 1200 °C have been experimentally determined by optical microscopy and electron probe micro-analysis of the equilibrated alloys. The phase transformations were investigated by means of the differential scanning calorimetry. Based on the experimental data of phase equilibria and thermodynamic properties, the thermodynamic assessment of the Co-Cu-V ternary system was carried out by using the calculation of phase diagrams method. A consistent set of the thermodynamic parameters leading to reasonable agreement between the calculated results and experimental data was obtained in the Co-Cu-V ternary system. Meanwhile, the calculated results show that the critical temperature of metastable magnetically induced miscibility gap of (α f Co) and (α p Co) phases in the Co-V system gradually decreases with increasing Cu composition in the range of 0-3 wt.% additions.  相似文献   

8.
A reaction calorimeter coupled with first-principles calculations was employed to obtain enthalpies of formation for τ1 (Al9FeNi) and τ2 (Al10Fe3Ni) compounds. The previous thermodynamic model for describing the disorder/order transition (fcc_A1/L12) in the Al–Fe–Ni system was modified to extrapolate this model to quaternary and higher-order systems. The first-principles energy calculations for the end-members of sub-lattice models in ternary compounds and L12 phase were performed to facilitate subsequent modeling. The existence of the experimentally observed miscibility gap for ternary B2-ordered phase is detected by the present calculation. Such a feature cannot be identified with available thermodynamic software due to the tiny difference between the Gibbs energies associated with different phase assemblages. A set of thermodynamic parameters for the Al–Fe–Ni system was obtained via thermodynamic modeling. Numerous experimental data including phase diagram, thermodynamic properties and site occupation of Fe in B2 phase are well accounted for by the present modeling.  相似文献   

9.
《Acta Materialia》2004,52(9):2541-2547
There are no previous phase equilibria studies of the Sn–Ag–Ni ternary system, even though the phase equilibria information is important for the electronic industry. The isothermal section of the Sn–Ag–Ni ternary system at 240 °C has been determined in this study both by experimental examination and thermodynamic calculation. Experimental results show no existence of ternary compounds in the Sn–Ag–Ni system, and all the constituent binary compounds have very limited solubilities of the ternary elements. The binary Ni3Sn2 phase is very stable and is in equilibrium with most of the phases, Ag3Sn, ζ-Ag4Sn, Ag, Ni3Sn4 and Ni3Sn phases. A preliminary thermodynamic model of the ternary system is developed based on the models of the three binary constituent systems without introducing any ternary interaction parameters. This ternary thermodynamic model is used with a commercial software Pandat to calculate the Sn–Ag–Ni 240 °C isothermal section. The phase relationships determined by calculation are consistent with those determined experimentally. Besides phase equilibria determination, the interfacial reactions between the Sn–Ag alloys with Ni substrate are investigated at 240, 300 and 400 °C, respectively. It is found that the phase formations in the Sn–3.5wt%Ag/Ni couples are very similar to those in the Sn/Ni couples.  相似文献   

10.
11.
A thermodynamic analysis of the phase equilibria in the Ni-Si-B ternary system was conducted. A regular solution approximation based on a sublattice model was adopted to describe the Gibbs energies for the individual phases in the binary and ternary systems. A set of thermodynamic parameters for the individual phases was evaluated from literature data on phase boundaries and thermochemical properties. The optimized parameters reproduced the experimental data, for the most part, satisfactorily. However, in the calculated isothemal section at 850 °C, phase equilibria between the fcc phase and Ni6Si2B or Ni3Si(β 1) and Ni6Si2B were found instead of the experimentally observed equilibria between Ni3Si(β 1) and Ni3B or Ni5Si2(γ) and Ni3B. Further, in the primary crystal surface for the fcc phase, the calculated liquidus temperatures were higher than the reported values by approximately 80 °C. Therefore, it is considered that the fcc phase evaluated in the Ni-Si system by Lindhólm and Sundman is too stable.  相似文献   

12.
13.
A thermodynamic analysis of the phase equilibria in the Ni-Si-B ternary system was conducted. A regular solution approximation based on a sublattice model was adopted to describe the Gibbs energies for the individual phases in the binary and ternary systems. A set of thermodynamic parameters for the individual phases was evaluated from literature data on phase boundaries and thermochemical properties. The optimized parameters reproduced the experimental data, for the most part, satisfactorily. However, in the calculated isothemal section at 850 °C, phase equilibria between the fcc phase and Ni6Si2B or Ni3Si(β 1) and Ni6Si2B were found instead of the experimentally observed equilibria between Ni3Si(β 1) and Ni3B or Ni5Si2(γ) and Ni3B. Further, in the primary crystal surface for the fcc phase, the calculated liquidus temperatures were higher than the reported values by approximately 80 °C. Therefore, it is considered that the fcc phase evaluated in the Ni-Si system by Lindhólm and Sundman is too stable.  相似文献   

14.
15.
16.
17.
18.
19.
Phase relations in the system CaO-Fe2O3-Y2O3 in air (( P\textO2 P_{{{\text{O}}_{2} }} /P°) = 0.21) were explored by equilibrating samples representing eleven compositions in the ternary at 1273 K, followed by quenching to room temperature and phase identification using XRD. Limited mutual solubility was observed between YFeO3 and Ca2Fe2O5. No quaternary oxide was identified. An isothermal section of the phase diagram at 1273 K was constructed from the results. Five three-phase regions and four extended two-phase regions were observed. The extended two-phase regions arise from the limited solid solutions based on the ternary oxides YFeO3 and Ca2Fe2O5. Activities of CaO, Fe2O3 and Y2O3 in the three-phase fields were computed using recently measured thermodynamic data on the ternary oxides. The experimental phase diagram is consistent with thermodynamic data. The computed activities of CaO indicate that compositions of CaO-doped YFeO3 exhibiting good electrical conductivity are not compatible with zirconia-based electrolytes; CaO will react with ZrO2 to form CaZrO3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号