首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
壳聚糖成膜溶液及其膜相关性质研究   总被引:2,自引:0,他引:2  
以不同体积分数的乙酸溶液为分散剂,不同质量浓度的山梨醇为增塑剂,配制不同质量浓度的两种脱乙酰度壳聚糖溶液,探讨不同质量浓度基质对壳聚糖溶液pH值和电导率的影响,阐述壳聚糖溶液在成膜过程中各离子的聚合情况。对壳聚糖成膜溶液的流变学性质进行研究,并对其形成的膜进行表征,分析山梨醇对壳聚糖成膜溶液及其膜性质的影响。结果表明:壳聚糖成膜溶液体系中,主要是山梨醇、乙酸与壳聚糖中的各种离子结合形成黏稠的溶液。含与不含山梨醇作为增塑剂的壳聚糖成膜溶液均表现出假塑性流体,山梨醇与两种脱乙酰度的壳聚糖均有很好的相容性,能够形成均匀、连续的膜,使壳聚糖膜的吸热峰和放热峰发生一定的迁移,对其热稳定性有一定的影响。  相似文献   

2.
壳聚糖溶液的流变学性质及应用研究   总被引:1,自引:0,他引:1  
对壳聚糖稀溶液的流变学性质进行了研究,探讨了分子量和脱乙酰度结构参数以及温度、浓度、剪切速率、pH、离子强度等环境因素对壳聚糖稀溶液流变性质的影响。结果表明:壳聚糖溶液的黏度随分子量的增大而增大;随着脱乙酰度的增大和pH的增大,壳聚糖溶液的黏度先减小后增大,分别在脱乙酰度70.8%和pH4.9时黏度达到最小;离子强度的增大导致壳聚糖溶液的黏度降低。壳聚糖溶液是剪切变稀的假塑性流体,其黏度随浓度的增加逐渐增加,随温度的升高而减小,在0~80℃范围内,温度对壳聚糖溶液的黏度的影响符合Arrhenius模型,活化能为32.60kJ/mol。因此当作为食品增稠剂时,应该选用高分子量、高脱乙酰度的壳聚糖,添加到酸性低盐食品体系中。  相似文献   

3.
本文对壳聚糖稀溶液的流变学性质进行了研究,重点探讨了脱乙酰度、pH值和离子强度对壳聚糖稀溶液的流变学性质的影响。结果表明:随着脱乙酰度的增大和pH值的增大,壳聚糖溶液的黏度先减小后增大,分别在脱乙酰度70.8%和pH 4.9时黏度达到最小;离子强度的增大导致壳聚糖溶液的黏度降低。黏度的变化与壳聚糖溶液的带电情况有直接关系,随着脱乙酰度的增大,壳聚糖溶液的Zeta电位和电导率一直在增大;随着溶液pH值的升高,溶液的Zeta电位在降低;而随着溶液离子强度和pH值的增加,溶液的电导率在增加。  相似文献   

4.
废铬革屑胶原蛋白与壳聚糖复合成膜的研究   总被引:4,自引:0,他引:4  
从废弃蓝革屑中提取出胶原蛋白,对甲壳素脱乙酰制备壳聚糖,然后将两者与甘油共混制成复合膜,并对膜的机械性能、透水气率、吸水率进行了测定。试验研究了胶原蛋白分子质量、甘油用量、胶原蛋白与壳聚糖质量比、成膜溶液pH值及成膜温度对膜性能的影响。试验结果表明:甘油用量的质量浓度(相对于成膜溶液的总体积) 0 . 0 2 0kg/L ,胶原蛋白与壳聚糖质量比为0. 1 6,成膜溶液pH值为3 81 ,成膜温度为5 0℃时,复合膜的抗拉强度和延伸率均为最大,分别为8. 1 4MPa和5. 1 6%。  相似文献   

5.
废铬革屑胶原蛋白与壳聚糖复合成膜的研究(续)   总被引:1,自引:0,他引:1  
从废弃蓝皮屑中提取出胶原蛋白,对甲壳素脱乙酰制备壳聚糖,然后将两者与甘油共混制成复合膜,并对膜的机械性能、透水气率、吸水率进行了测定。试验研究了胶原蛋白分子质量、甘油用量、胶原蛋白与壳聚糖质量比、成膜溶液pH值及成膜温度对膜性能的影响。试验结果表明:甘油用量的质量浓度(相对于成膜溶液的总体积) 0 0 2 0kg/L ,胶原蛋白与壳聚糖质量比为0 1 6,成膜溶液pH值为3 81 ,成膜温度为5 0℃时,复合膜的抗拉强度和延伸率均为最大,分别为8 1 4MPa和5 1 6%。  相似文献   

6.
以产葡萄糖酸钠的废弃菌丝体为原料,探究了从废弃黑曲霉(Aspergillus niger)菌丝体提取壳聚糖的工艺条件。对废弃菌丝体进行了各组分分析后,在单因素的基础上对提取工艺进行优化,得出了碱法提取壳聚糖的最佳优化条件:料液比为1∶30(g∶mL),6% NaOH处理2 h,反应温度为95 ℃时,菌体蛋白去除率达到77.26%;碱(NaOH)浓度为30%,处理温度为120 ℃,脱蛋白处理后样品采用重复碱处理的方式脱乙酰,样品分两次重复用30% NaOH溶液在120 ℃下各处理1 h,得到壳聚糖的脱乙酰度为78.85%,壳聚糖得率为10.53%;后续用12%醋酸纯化处理,得到脱乙酰度为84.49%的壳聚糖,得率为9.56%。  相似文献   

7.
首次采用无水乙醇浸泡辅助脱乙酰基与间歇式碱处理相结合的方法,通过控制反应时间制备不同脱乙酰度的蚕蛹壳聚糖。同时对其脱乙酰度、表观黏度和分子量等理化指标进行测定,用红外光谱对其基本结构进行表征,并分别采用邻二氮菲-Fe2+氧化法、核黄素-光-氮蓝四唑法和DPPH法对其清除羟自由基(·OH)、超氧阴离子自由基(O2-·)和DPPH自由基能力进行了测定。结果表明:当反应时间为5、7、9h时,蚕蛹壳聚糖的脱乙酰度分别为:78.12%、86.45%、95.96%;蚕蛹甲壳素和不同脱乙酰度壳聚糖的红外光谱图的不同说明其结构上的差异,可为进一步研究其性质提供理论参考;蚕蛹壳聚糖对羟自由基和超氧阴离子自由基的清除率均较低,但均高于虾蟹壳来源的壳聚糖;对DPPH·的清除率较高。三种壳聚糖对三种自由基清除率的大小顺序均为:脱乙酰度为95.96%的壳聚糖〉脱乙酰度为86.45%的壳聚糖〉脱乙酰度为78.12%的壳聚糖。  相似文献   

8.
研究了离子交换层析色谱分离壳聚糖,分离出不同脱乙酰度的壳聚糖组分,测定了各组分以及未分离的壳聚糖的脱乙酰度和壳聚糖样品的热焓性质,并对壳聚糖溶液浓度与粘度的关系进行了研究。  相似文献   

9.
陈悦  陈季旺  周琦  夏文水 《食品科学》2014,35(9):106-111
以壳聚糖(chitosan,CTS)和乳清分离蛋白(whey protein isolate, WPI)为成膜基质,制备壳聚糖-乳清分离蛋白复合膜(chitosan/whey protein isolate composite film,CWF),并分析CWF的理化性质。通过测定CWF的拉伸强度、断裂延伸率、水蒸气透过率、透明度,优化CWF的成膜条件为CTS脱乙酰度90%、分子质量300 kD,成膜液pH 3,甘油添加量1.5%,WPI添加量0.5%。CWF的机械性能和剥离性比CTS膜显著改善,WVP和透明度有良好的改善。扫描电镜分析显示CWF的横截面更规则、均匀,且外观为均匀半透明膜。傅里叶红外光谱扫描结果显示CTS、WPI制备CWF时在其分子之间形成了强烈的相互作用,二者有良好的相容性。  相似文献   

10.
在烟支中添加不同剂量、具有不同脱乙酰度的壳聚糖溶液 ,检测卷烟中对应的焦油和烟碱释放量 ,以研究不同脱乙酰度的壳聚糖在降低卷烟烟气中焦油、烟碱释放量方面的作用 ,再对烟支进行评吸 ,从而确定了壳聚糖溶液的最佳添加量 .结果表明 ,烟支中加入 1.0mL脱乙酰度为 90 %的壳聚糖溶液 ,主流烟气中焦油降低 15 .5 % ,烟碱降低 13.8% ,内在品质有明显提高  相似文献   

11.
The purpose of this study was to clarify the structural changes in chitosan films made with sorbitol. The degree of deacetylation (DD) in the starting chitosan was 85% or 95%. The appearance and cross-sectional characteristics of the films were analyzed by SEM. This showed sorbitol to be a good crosslinking agent, generating the desired miscibility with both types of chitosan. XRD revealed an increase in crystallinity for films without sorbitol and a decrease for films spiked with sorbitol compared with the original chitosan. FT-IR showed that the addition of sorbitol did not change the chemical structure of chitosan and no new types of bonds were created during film formation. Changes in the chemical surrounding of carbon atoms analyzed by CP/MAS 13C NMR indicated that the acetic acid solution used partially destroyed the chitosan powder and protonized some groups, enabling sorbitol to be inserted and to form hydrogen bonds in the matrix.  相似文献   

12.
The effect of chitosan molecular weight (MW) and degree of deacetylation (DD) on the physicochemical properties of gelatine-based films was studied with the goal of improving the films. Determination of the dynamic viscoelastic properties (elastic modulus G′ and viscous modulus G″) of the film-forming solutions revealed that the interactions between gelatine and chitosan were stronger in the blends made with chitosan of higher molecular weights or higher degrees of deacetylation than the blends made with lower molecular weights or degrees of deacetylation. Fish gelatine films modified with chitosan of higher molecular weights or higher degrees of deacetylation had higher tensile strengths (TS, 72.4 MPa for 550 kDa vs. 62.2 MPa for 200 kDa; 63.2 MPa for 93.6% DD vs. 38.0 MPa for 76.5% DD) and higher glass transition temperatures (Tg, 130 °C for 550 kDa vs. 108 °C for 200 kDa; 108 °C for 93.6% DD vs. 103 °C for 76.5% DD). Fourier transform infrared spectra (FTIR) and X-ray diffraction (XRD) studies indicated that gelatine and chitosan interactions determined the properties of the film. Thus, combining gelatine and chitosan may be a method for improving the physicochemical properties of gelatine films, especially when using chitosan of higher molecular weights and higher degrees of deacetylation.  相似文献   

13.
Khalid Ziani  Veronique Coma 《LWT》2008,41(10):2159-2165
Chitosans with two different deacetylation degree (DD) (60.9% and 96%) were used to elaborate edible films. The influence of the degree of deacetylation and the presence of glycerol and Tween 20 in the formulation on the surface tension of the film forming solutions as well as on the chemical structure, optical and mechanical properties and water vapor permeability (WVP) of the resulting films were studied.IR spectra showed no significant differences on the chemical structures of chitosan of the different films. However, X-ray diffraction analysis indicated that the use of chitosan with higher DD and the use of glycerol as additive resulted in higher crystallinity. Films made of chitosan with the lower DD (60.9%) were found to have higher tensile strength (TS) and elongation (E) in a tensile test. Degree of deacetylation did not have any effect on WVP. The presence of glycerol resulted in less resistant, more elastic and more permeable films.The presence of Tween 20 improved the wettability of film solutions and affected significatively mechanical, optical and barrier properties of the films. A positive interaction between glycerol and Tween 20 was observed for WVP.  相似文献   

14.
Abstract: Effects of chitosan molecular weight (1815 and 366 kDa), type of acid (1% acetic, formic, and propionic acid, or 0.5% lactic acid) and plasticizer (0, 25% glycerol or sorbital w/w chitosan) on the mechanical, water barrier, and antibacterial properties of β‐chitosan films were investigated. Tensile strength (TS) of high molecular weight (Hw) films was 53% higher than that of low molecular weight (Lw) ones, acetate, and propionate films had the highest TS (43 and 40 MPa) among tested acids, and plasticizer‐reduced film TS 34%. Film elongation at break (EL) was higher in Hw films than in Lw ones, in which formate and acetate films were the highest (9% and 8%, respectively), and plasticizer increased the film EL 128%. Molecular weight of chitosan did not influence water vapor permeability (WVP) of the films. Acetate and propionate films had lower WVP than other acid types of films, and plasticizer increased film WVP about 35%. No difference was found between glycerol and sorbitol films in terms of film mechanical and water barrier properties. Lw β‐chitosan films showed significant antibacterial activity against E. coli and L. innocua. This study demonstrated that β‐chitosan films are compatible to α‐chitosan films in physicochemical properties and antibacterial activity, yet with simple sample preparation. Practical Application: β‐chitosan based edible films at molecular weight of about 300 kDa showed great antibacterial activity against Gram‐positive and Gram‐negative bacteria. The films have similar mechanical and water barrier properties to α‐chitosan based films at the similar molecular weight, but simple sample preparation procedures and more attractive color. The release of active chitosan fragment from the film matrix acts as an antibacterial agent, making β‐chitosan films suitable as intelligent food wraps or coatings for a wide range of food products to control moisture loss and prevent surface bacterial growth.  相似文献   

15.
Properties of Chitosan Films as a Function of pH and Solvent Type   总被引:2,自引:0,他引:2  
ABSTRACT: Two different deacetylated chitosans were dissolved in formic, acetic, lactic, or propionic acid to prepare chitosan films. The pH values of the film-forming solutions were adjusted to 3, 4, and 5. Water vapor permeability (WVP), tensile strength (TS), elongation (E), and total soluble matter (TSM) were significantly ( P < 0.05) affected by acid type, pH, and degree of deacetylation (DA). Low DA (LDA) chitosan films had lower WVP and TSM, higher TS compared with high DA (HDA) chitosan films. The E values were not affected by DA. As pH increased, WVP and TSM of chitosan films tended to increase while TS decreased significantly ( P < 0.05). Chitosan films with acetic and propionic acid solvents had low WVP and TSM and high TS, while films with lactic acid solvent had high E and TSM and the lowest TS. Fourier-transform infrared showed peak shifting in the spectra with different solvents and at different pH values. Chitosan films with lactic acid solvent showed a peak shift to a lower frequency range. The NH3+ band was absent in the pH 5.0 chitosan film spectra.  相似文献   

16.
Extraction and depolymerisation of chitin and chitosan from prawn shells was carried out using various chemical procedures. Sodium hydroxide and hydrochloric acid solutions were used for deproteination and demineralisation, respectively, while acetone was used for decolourisation. The amount of chitin and subsequently chitosan obtained was ∼35% and 25% respectively of the dry weight of the shells. The chitin was deacetylated using sodium hydroxide at 100 °C and the influence of the concentration of the reagent and duration of the reaction was investigated. The degree of deacetylation (DD) of the chitosan was evaluated by FTIR and NMR spectroscopy and the molecular mass distribution was determined by Gel Permeation Chromatography. It was found that the final DD was significantly higher using 50% sodium hydroxide solution (73% ± 9%) compared to 25% sodium hydroxide solution (40% ± 5%). It was noted also that the deacetylation reaction was more than 80% completed after 2 h but the chitosan produced had higher molecular mass while chitosan produced after 10 h had lower molecular mass and higher degree of deacetylation. The molecular mass distribution was bimodal for all the samples and consisted of a broad high molecular mass peak (peak 1) and a sharp low molecular mass peak (peak 2). The Mw of peak 1 decreased from ∼1.3 × 106 after 2 h reaction with sodium hydroxide to 3.1 × 105 after 10 h reaction indicating that depolymerisation and deacetylation occurred simultaneously. Peak 2 had a Mw of ∼2.4–9.9 × 103.  相似文献   

17.
The effect of a commercial lipase on chitosan degradation was investigated. When four chitosans with various degrees of deacetylation were used as substrates, the lipase showed higher optimal pH toward chitosan with higher DD (degree of deacetylation). The optimal temperature of the lipase was 55 °C for all chitosans. The enzyme exhibited higher activity to chitosans which were 82.8% and 73.2% deacetylated. Kinetics experiments show that chitosans with DD of 82.8% and 73.2% which resulted in lower Km values had stronger affinity for the lipase. The chitosan hydrolysis carried out at 37 °C produced larger quantity of COS (chitooligosaccharides) than that at 55 °C when the reaction time was longer than 6 h, and COS yield of 24 h hydrolysis at 37 °C was 93.8%. Products analysis results demonstrate that the enzyme produced glucosamine and chitooligosaccharides with DP (degree of polymerization) of 2–6 and above, and it acted on chitosan in both exo- and endo-hydrolytic manner.  相似文献   

18.
An edible composite film was prepared from an emulsion system based on chitosan and virgin coconut oil (VCO). The effect of incorporation of VCO was evaluated at various concentrations and the optimum concentration was chosen based on resultant changes in the properties of the film. Addition of VCO in film forming solution resulted in increase in film thickness and marginal reduction in film transparency. Compatibility of VCO with chitosan was better at lower concentration of VCO as indicated by the microstructure of composite film in scanning electron micrographs. Phase separation was evident at higher level of oil incorporation and the optimal oil/chitosan ratio was determined to be at 0.5 to 1 mL/g chitosan. Furthermore, chemical interaction took place between VCO and chitosan as revealed by Fourier transform infrared spectroscopy data. Even though control chitosan films exhibited superior gas barrier properties, composite film with optimum VCO concentration revealed better mechanical and moisture sorption properties.  相似文献   

19.
Thawien Bourtoom  Manjeet S. Chinnan   《LWT》2008,41(9):1633-1641
Biodegradable blend films from rice starch–chitosan were developed by casting film-solution on leveled trays. The influence of the ratio of starch and chitosan (2:1, 1.5:1, 1:1, and 0.5:1) on the mechanical properties, water barrier properties, and miscibility of biodegradable blend films was investigated. The biodegradable blend film from rice starch–chitosan showed an increase in tensile strength (TS), water vapor permeability (WVP), lighter color and yellowness and a decreasing elongation at the break (E), and film solubility (FS) after incorporation of chitosan. The introduction of chitosan increased the crystalline peak structure of starch film; however, too high chitosan concentration yielded phase separation between starch and chitosan. The amino group band of the chitosan molecule in the FTIR spectrum shifted from 1541.15 cm−1 in the chitosan film to 1621.96 cm−1 in the biodegradable blend films. These results pointed out that there was a molecular miscibility between these two components. The properties of rice starch–chitosan biodegradable blend film and selected biopolymer and synthetic polymer films were compared; the results demonstrated that rice starch–chitosan biodegradable blend film had mechanical properties similar to the other chitosan films. However, the water vapor permeability of rice starch–chitosan biodegradable blend film was characterized by relatively lower water vapor permeability than chitosan films but higher than polyolefin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号