共查询到20条相似文献,搜索用时 0 毫秒
1.
Cold hole expansion effect on the fatigue crack growth in welds of a 6061-T6 aluminum alloy 总被引:1,自引:0,他引:1
K.C. Viveros R.R. Ambriz A. Amrouche A. Talha C. García D. Jaramillo 《Journal of Materials Processing Technology》2014,214(11):2606-2616
Compact test specimens were extracted from a 6061-T6 aluminum alloy welded plate with a thickness of 9 mm to analyze the cold hole expansion effect on fatigue crack growth tests conducted in mode I cyclic loading. At R = 0.1, a sharp crack in base metal, weld metal and heat affected zone was propagated from 17 to 24 mm. The fatigue crack growth at 24 mm (α = a/W = 0.3) was delayed by drilling a hole at the crack tip and applying a cold hole expansion of 4.1%. The residual stress fields due to cold hole expansion were determined with the finite element method. The fatigue crack growth testing was continued up to a crack length of 35 mm (α ∼ 0.43) at the same R, and crack opening displacements of the post-expansion crack were also determined with the finite element method. The results were expressed in terms of crack length versus number of cycles, as well as, fatigue crack growth rate as a function of applied and effective stress intensity factor range. The cold hole expansion contributed to delay the fatigue crack growth in base metal, and to a lesser extent in the weld metal and heat affected zone. A crack closure effect was determined by means of load versus crack opening displacement curves of the post-expansion crack, which was, completely or partially closed, in welded zones with compressive residual stress fields. The fracture surfaces of each welded zone were analyzed to elucidate the crack nucleation zone and its relation with the residual stress field. In all cases the crack was initiated at the surface of the specimen where the residual stresses were positive. 相似文献
2.
为了明确不同强度残余压应力场对裂纹扩展速率及寿命的影响,采用埋弧自动焊通过不同焊接热输入控制不同焊缝宽度,从而在制备标准CT试样时通过机械加工时的残余应力释放得到各组不同强度残余压应力场的各组焊接接头,并根据裂纹闭合原理,提出基于Elber的三参数分段公式,根据分段公式条件从MTS试验机采用柔度法获得的试验数据中提取、归纳数据,利用断裂力学方法和数理统计方法进行分析,得出结论,裂尖存在的焊接残余压应力场在一定程度上可以明显降低裂纹扩展速率,提高裂纹扩展寿命,对焊接接头裂纹扩展有着关键性作用。 相似文献
3.
Fatigue crack growth behaviour of pulsed current gas tungsten arc, friction stir and laser beam welded AZ31B magnesium alloy joints 总被引:1,自引:0,他引:1
The laser beam welded joints offered better resistance against the growing fatigue cracks compared to friction stir welded and pulsed current gas tungsten arc welded AZ31B magnesium alloy joints. The formation of very fine grains in weld region, higher fusion zone hardness, uniformly distributed fine precipitates and favourable residual stress field of the weld region are the main reasons for superior fatigue performance of laser beam welded joints of AZ31B magnesium alloy. 相似文献
4.
Kiyotaka Nakashima Hiroshi Shimanuki Tetsuro Nose Tadashi Ishikawa 《Welding International》2013,27(5):343-349
It has been generally recognized that the fatigue life of welded joints is little influenced by the strength of steels owing to the high-stress concentration and the tensile residual stress near the weld toe. In this paper, improvement of the fatigue life of welded joints using steel with high resistance to fatigue crack growth (ferrite/martensite (F/M) steel) is investigated. F/M steel has a microstructure with an elongated and banded martensite phase distributed in a ferrite matrix and a fatigue crack growth rate of about one-half to one-tenth in the thickness direction, compared with conventional steel. As a result, the fatigue life of an out-of-surface gusset-welded joint increases with the decrease of the fatigue crack growth rate. The fatigue life of welded joints using F/M steel with the highest resistance to fatigue crack growth increases to about twice that of joints using conventional steel. Whereas the fatigue crack growth rate decreases significantly, the fatigue life of welded joints increases only slightly. This can be attributed to the stress ratio independent of the fatigue crack growth rate. In other words, the fatigue crack growth rate of F/M steel increases with the increase of the stress ratio, approaching that of conventional steel. In the case of welded joints, even if a fatigue test is carried out at a low-stress ratio, the region near the weld toe is under a high-stress ratio due to tensile residual stress. Therefore, improvement of the fatigue life of welded joints becomes comparatively small so that the effect of fatigue crack retardation of F/M steel decreases. 相似文献
5.
6.
7.
In this paper, a plasticity-corrected stress intensity factor range ΔKpc is developed on the basis of plastic zone toughening theory. Using this new mechanical driving force parameter for fatigue crack growth (FCG), a theoretical correlation of Paris’s law with the crack tip plastic zone is established. Thus, some of the important phenomena associated with the plastic zone around the fatigue crack tip, such as the effects of load ratio R, overload and T stress on the FCG behavior, can be incorporated into the classical Paris’s law. Comparisons with the experimental data demonstrate that ΔKpc as a single and effective mechanical parameter is capable of describing the effects of the load ratio, T stress and overload on the FCG rate. The FCG rate described as a function of ΔKpc tested under a simple loading condition can also be used for other complex loading conditions of the same material. 相似文献
8.
Yasushi Morikage Katsuyoshi Nakanishi Satoshi Igi Takashi Nakano Hajime Tomo 《Welding International》2017,31(7):531-537
New peening technology is proposed to improve the fatigue strength of welded joints. By using this technology, compressive residual stress is introduced at weld toe by the developed peening procedure which plastic deformation is only applied to the base material near the weld toe. In this study, improvement mechanism of fatigue strength of weld joints by hammer peening on base metal was clarified by FEA. It was clarified that increasing of stress at weld toe is controlled by depression formed near the weld toe. Not only compressive residual stress at weld toe but also decreasing stress concentration at weld toe by plastic deformation on base metal was indicated as the factor of improving fatigue strength of weld joints. 相似文献
9.
Direct observation on fatigue crack growth behavior in SiC (SCS-6) fiber-reinforced Ti-15-3 alloy matrix composite subjected to a constant tension–tension loading mode was performed by scanning electron microscope using a single edge-notched specimen in vacuum at room temperature and 550 °C. The fatigue crack growth rate at 550 °C was lower than that at room temperature, and the difference between the fatigue crack growth rates at room temperature and 550 °C increased with increasing fatigue cycles. The crack opening displacement at 550 °C was smaller than that at room temperature when the crack length exceeded a definite value, though the interface friction stress between the fiber and matrix at elevated temperature was much smaller than that at room temperature. The above results were explained qualitatively by a residual stress mechanism at the crack front and the crack closure behavior at crack wake, which could be produced by matrix creep asymmetry in tension and compression at elevated temperature during each fatigue cycle. 相似文献
10.
目前普遍应用的焊缝疲劳仿真分析方法主要有名义应力法和结构应力法,针对两种方法的应用局限性及未考虑剪切结构应力导致的预测精度不高等问题,提出了一种新的高精度焊缝疲劳寿命预测方法。该方法是以断裂力学为理论基础,通过有限元软件提取焊缝周围节点的节点力及力矩,并通过一系列计算得到整个裂纹扩展路径上的平均等效应力强度因子ΔKeq,并将其作为本文中焊缝疲劳寿命预测方法的评价参数。通过对DP800GI和HSLA350GI两种高强钢材料的搭接接头进行疲劳试验,并将ΔKeq与试验所得的疲劳寿命数据进行双对数回归分析,得到的一条主ΔKeq-N曲线作为焊缝的疲劳寿命预测曲线,并与目前的名义应力法和结构应力法进行预测精度对比,得出本文中的焊缝疲劳寿命预测方法的预测精度高于目前的名义应力法和结构应力法。 相似文献
11.
S. Song 《Science & Technology of Welding & Joining》2017,22(4):265-277
In this study, an in-depth investigation of repair weld geometry effects on residual stress distributions in terms of both through-thickness membrane and bending content as well as its contribution to fracture driving force is carried out. Some major findings are: A fundamental difference in residual stress distributions between initial and repair welds can be characterised as a significant elevation of membrane and bending content in transverse residual stresses. The dominance of repair-induced residual stresses over those generated by initial welds suggests that initial weld residual stresses can be assumed negligible in repair weld modelling. A weld repair should be designed as long as possible, as narrow as possible and as shallow as possible. 相似文献
13.
通过对比钛合金不同显微组织下疲劳裂纹扩展速率Paris区转折点的位
置, 发现原始β晶粒尺寸是影响Paris区转折点位置的主要因素, 晶
团尺寸以及片层厚度对转折点位置没有影响. 并且通过分析转折点前、后
疲劳裂纹扩展微观阶段的转变及断裂方式变化, 得出转折点的出现是
疲劳裂纹尖端塑性区尺寸超过晶粒尺寸所致. 具有β晶粒的马氏体组
织疲劳裂纹扩展速率Paris区并不存在转折点, 说明转折点的出现不仅仅是
由于原始β晶粒的存在, 还和显微组织类型有关. 通过分析还发现,
钛合金片层组织中裂纹尖端塑性区实际尺寸大于计算得到的单向塑性
区尺寸以及循环塑性区尺寸. 相似文献
14.
This paper studies the effect of electron beam (EB) surface hardening on the fatigue crack growth rate in AISI 4340 steel. The heat treatment conditions were varied to consider the influence of microstructure and residual stress. The results show that increasing the EB heat input increases the compressive residual stress in the hardened layer. Thus EB surface-hardening treatment improves the fatigue crack growth resistance. This effect increases with increasing EB heat input but disappears as the ΔK value increases. The fracture mechanism of the hardened layer is intergranular fracture, while that of the base material is transgranular quasi-cleavage. 相似文献
15.
L. F. N. Marques A. P. Gerlich E. M. Braga 《Science & Technology of Welding & Joining》2017,22(2):87-96
The fatigue strength of weld joints manufactured using gas metal arc welding and cold wire GMAW (CW-GMAW) was evaluated under stress-controlled cyclic loading. The material used in this study was class ASTM 131 grade A steel, joined using ER70S wire filler metal. The addition of cold wire led to a decrease in the amount of intergranular ferrite and an increase in hardness in the heat-affected zone. The assessment of fatigue life was performed by using the Weibull distribution and the results revealed that with a 99% reliability the joints produced using the CW-GMAW process have a longer fatigue life, especially as the stress amplitude increases. 相似文献
16.
Residual stresses and strains in orthogonal metal cutting 总被引:2,自引:0,他引:2
The finite element method is used to simulate and analyze the orthogonal metal cutting process under plane strain conditions, with focus on the residual stress and strain fields in the finished workpiece. Various modeling options have been employed. The frictional interaction along the tool-chip interface is modeled with a modified Coulomb friction law. Chip separation is modeled by the nodal release technique based on a critical stress criterion. Temperature-dependent material properties and a range of tool rake angle and friction coefficient values are considered. It is found that while thermal cooling increases the residual stress level, the effects of the rake angle and the friction coefficient are nonlinear and depend on the range of these parameters. The predicted residual stress results compare well with experimental observations available in the literature. 相似文献
17.
利用有限元分析软件ANSYS分别建立了非承载十字接头焊趾裂纹的二维和三维断裂模型,并计算了焊趾裂纹尖端的应力强度因子.分析了等离子喷涂层弹性模量对裂纹尖端应力强度因子的影响,以及裂纹尺寸对裂纹尖端应力强度因子的影响.计算结果表明,等离子喷涂层使焊趾裂纹尖端应力强度因子明显降低.对于确定的裂纹尺寸、形状,裂纹尖端的应力强度因子随涂层弹性模量的增加而降低.当Ec/Ep=0.6,二维模型中a/t=0.125时,喷涂后裂纹尖端应力强度因子降低了62.5%;三维模型中a/t=0.125,a/c=0.2时,喷涂后裂纹尖端的应力强度因子降低了42.6%. 相似文献
18.
19.
20.
高温焊接接头由于蠕变损伤而提前失效的案例频频发生,准确预测焊接接头的蠕变损伤和裂纹扩展行为对于保证高温装备的结构完整性具有重要意义.文中基于延性耗竭模型并结合有限元方法,考察了结构因素对厚壁圆管焊接接头蠕变失效行为的影响.结果表明,蠕变裂纹萌生/扩展行为受热影响区宽度影响,细晶热影响区宽度对蠕变裂纹的萌生时间影响不大,但会改变裂纹萌生位置;相比之下,粗晶热影响区的宽度变化对裂纹萌生时间影响略大.不同坡口形式展现出不同的裂纹萌生/扩展行为,而X形坡口是四种坡口形式中的较优选择. 相似文献