首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Spherically imploding plasma liners, formed by merging hypersonic plasma jets, are a proposed standoff driver to compress magnetized target plasmas to fusion conditions (Hsu et al. in IEEE Trans Plasma Sci 40:1287, 2012). In this paper, the parameter space and physics criteria are identified for a subscale, plasma-liner-formation experiment to provide data, e.g., on liner ram-pressure scaling and uniformity, that are relevant for addressing scientific issues of full-scale plasma liners required to achieve fusion conditions. Based on these criteria, we quantitatively estimate the minimum liner kinetic energy and mass needed, which informed the design of a subscale plasma liner experiment now under development.  相似文献   

2.
根据微型X射线管的特点,设计了基于推挽电路和闭环反馈电路的灯丝驱动电源。采用了UCC3808脉宽调制(Pulse Width Modulation,PWM)控制芯片产生两路相位相反的PWM信号,并经由UCC37324金属氧化物半导体(Metal-Oxide-Semiconductor,MOS)管大电流驱动器提高驱动效率,实现推挽结构的后端驱动电路。闭环反馈电路的设计采用精密电阻将管电流的信号转换为等比例的电压信号引入到反馈环节,通过系统自身的闭环控制实现管电流的恒定,并保持高效率和低功耗。实验首先通过外接1.5?的功率电阻测量系统功率,测得输入功率为11 W,效率超过80%,符合灯丝电源的功耗指标要求;然后连接实际的X光管灯丝,经测试可正常工作,管流稳定度为0.227%。  相似文献   

3.
研制的Z-箍缩X射线辐射功率探测系统,利用闪烁体与X射线作用产生的荧光,在X射线入射45°方向进行探测。系统具有平坦能量响应、大动态范围和抗干扰能力强的特点。在Z-箍缩“强光1号”装置上,对X射线辐射功率进行测量,获得了W丝阵负载最大X射线辐射产额为36-58kJ,辐射功率为0-84TW。  相似文献   

4.
A two-dimensional self-consistent kinetic model was developed to study the influence of the various factors on the electron energy distribution function. These factors include gas pressure the driving frequency, the radius and length of the inductively coupled plasma equipment, the amplitude of the radio-frequency coil current, and the number of turns of rf coils. The spatial profiles of the rf electric field and power density have also been calculated under the same parameters. Numerical results show that the electron energy distribution functions are significantly modified and the spatial profiles of the rf electric field and rf power density are also demonstrated.  相似文献   

5.
An Experimental Study on Kr Gas-puff Z-pinch   总被引:3,自引:0,他引:3  
Kr gas-puff Z-pinch experiment performed recently on Qiang-uang I pulsed power generator is reprted.The generator has a 1.5MA current with a pulse width of 100ns.The total X-ray energy as well as its spectrum has been obtained.and the average power of X-ray radiation in 50-700eV measured by XRDs is 2 TW.The generator configuration.gas-puff load assembly and diagnostic system for the experiments are described.  相似文献   

6.
The edge plasma code package SOLPS5.0 is employed to simulate the divertor power footprint widths of the experimental advanced superconducting tokamak(EAST)L-mode and ELM-free H-mode plasmas.The divertor power footprint widths,which consist of the scrape-off layer(SOL)widthλ_q and heat spreading 5,are important physical parameters for edge plasmas.In this work,a plasma current scan is implemented in the simulation to obtain the dependence of the divertor power footprint width on the plasma current I_p.Strong inverse scaling of the SOL width with I_p has been achieved for both L-mode and H-mode plasmas in the forms ofλ_(q,L-mode)=4.98×I_p~(-0.68)andλ_(q,H-mode)=1.86×I_p~(-1.08).Similar trends have also been demonstrated in the study of heat spreading with S_(L-mode)=1.95×I_p~(-0.542)and S_(H-mode)=0.756×I_p~(-0.872).In addition,studies on divertor peak heat load and the magnetic flux expansion factor show that both of them are proportional to plasma current.The simulation work here can act as a way to explore the power footprint widths of future tokamak fusion devices such as ITER and the China Fusion Engineering Test Reactor(CFETR).  相似文献   

7.
高功率Z箍缩软X射线功率测量   总被引:3,自引:0,他引:3  
针对“强光一号”装置喷氪气高功率Z箍缩等离子体实验产生1keV以下的软X射线,研制了脉冲恒压电源驱动的镍薄膜量热计,测量Z箍缩软X射线总能量,用快时间响应的X射线二极管(XRD)探测器建立了软X射线功率测量系统,给出了实验测量结果。  相似文献   

8.
One approach to Magnetized Target Fusion (MTF) builds upon the ongoing experimental effort (FRX-L) to generate a Field Reversed Configuration (FRC) target plasma suitable for translation and cylindrical-liner (i.e., converging flux conserver) implosion. Numerical modeling is underway to elucidate key performance drivers for possible future power-plant extrapolations. The fusion gain, Q (ratio of DT fusion yield to the sum of initial liner kinetic energy plus plasma formation energy), sets the power-plant duty cycle for a nominal design electric power [e.g. 1,000 MWe(net)]. A pulsed MTF power plant of this type derives from the historic Fast Liner Reactor (FLR) concept and shares attributes with the recent Inertial Fusion Energy (IFE) Z-pinch and laser-driven pellet HYLIFE-II conceptual designs. Work supported by the Office of Science, OFES, through Los Alamos National Laboratory, under DOE contract W-7405-ENG-36.  相似文献   

9.
10.
A method is described for choosing experimental parameters in studies of high-energy-density (HED) physics relevant to fusion energy, as well as other applications. An important HED issue for magneto-inertial fusion (MIF) is the interaction of metal pusher materials with megagauss (MG) magnetic fields during liner compression of magnetic flux and fusion fuel. The experimental approach described here is to study a stationary conductor when a pulsed current generates MG fields at the surface, instead of studying the inner surface of a moving liner. This places less demand upon the pulsed power system, and significantly improves diagnostic access. Thus the deceptively simple geometry chosen for this work is that of a z pinch composed of a metal cylinder carrying large current. Consideration of well known stability issues for the z pinch shows that for given peak current and rise time from a particular power supply, there is a minimum radius and thus maximum B field that can be created without disruption of the conductor before peak current. The reasons are reviewed why MG levels of magnetic field, as required for MIF, result in high temperatures and plasma formation at the surface of the metal in response to Ohmic heating. The distinction is noted between the liner regime obtained with cylindrical rods, which have a skin depth small compared to the conductor radius, and the exploding thin-wire regime, which has skin depth larger than the wire radius. A means of diagnostic development is described using a small facility (DPM15) built at the University of Nevada, Reno. It is argued that surface plasma temperature measurements in the 10-eV range are feasible based on the intensity of visible light emission.  相似文献   

11.
The absorption of neutral beam power and the fast ion stored energy in EAST plasmas with neutral beam injection(NBI)is analyzed to improve the calculation of thermal energy confinement time.The neutral beam power absorption and fast ion stored energy are systematically calculated using the TRANSP code,through the investigation of global parameters including plasma current,line averaged density and beam energy.Results have shown that scaling laws for the NBI absorption coefficient and fast ion energy rate are obtained through statistical analysis.A comparison of the confinement improvement factor H98y2 with these new scaling laws against those assuming fixed coefficients is given.  相似文献   

12.
The paper summarizes the work on design criteria for liners of Prestressed Concrete Reactor Vessels (PCRVs), which has been carried out by several German institutions from 1984 to 1988 within a future High Temperature Reactor (HTR) research project.The liner is discussed as part of the concept guaranteeing the integrity of the safe enclosure of the cooling medium. Its main function is leak-tightness during the whole lifetime of the power station. On the basis of the minor safety function of the composite liner compared to that of the prestressed concrete structure with its pressure bearing function and its integrity requirements the combined action and its effects between the liner and the concrete structure has been worked out. As it is shown the composite structure ‘steel liner + anchorage + concrete structure’ guarantees a high safety of the liner.The results deal with general and special requirements to the liner-anchor-system with regard to material, design details, analytical methods, fabrication and testing.  相似文献   

13.
Here we develop a two-dimensional numerical model of wire and arc additive manufacturing (WAAM) to determine the relationship between process parameters and deposition geometry, and to reveal the influence mechanism of process parameters on deposition geometry. From the predictive results, a higher wire feed rate matched with a higher current could generate a larger and hotter droplet, and thus transfer more thermal and kinetic energy into melt pool, which results in a wider and lower deposited layer with deeper penetration. Moreover, a higher preheat temperature could enlarge melt pool volume and thus enhance heat and mass convection along both axial and radial directions, which gives rise to a wider and higher deposited layer with deeper penetration. These findings offer theoretical guidelines for the acquirement of acceptable deposition shape and optimal deposition quality through adjusting process parameters in fabricating WAAM components.  相似文献   

14.
A possible plasma target for Magnetized Target Fusion (MTF) is a stable diffuse z-pinch in a toroidal cavity, like that in MAGO experiments. To examine key phenomena of such MTF systems, a magnetic flux compression experiment with this geometry is under design. The experiment is modeled with 3 codes: a slug model, the 1D Lagrangian RAVEN code, and the 1D or 2D Eulerian Magneto-Hydro-Radiative-Dynamics-Research (MHRDR) MHD simulation. Even without injection of plasma, high-Z wall plasma is generated by eddy-current Ohmic heating from MG fields. A significant fraction of the available liner kinetic energy goes into Ohmic heating and compression of liner and central-core material. Despite these losses, efficiency of liner compression, expressed as compressed magnetic energy relative to liner kinetic energy, can be close to 50%. With initial fluctuations (1%) imposed on the liner and central conductor density, 2D modeling manifests liner intrusions, caused by the m = 0 Rayleigh-Taylor instability during liner deceleration, and central conductor distortions, caused by the m = 0 curvature-driven MHD instability. At many locations, these modes reduce the gap between the liner and the central core by about a factor of two, to of order 1 mm, at the time of peak magnetic field.  相似文献   

15.
Study on X-ray emission from a low energy (1.8 kJ) plasma focus device powered by a 9 μF capacitor bank, charged at 20 kV and giving peak discharge current of about 175 kA by using a lead-inserted copper-tapered anode is reported. The X-ray yield in different energy windows is measured as a function of hydrogen filling pressure. The maximum yield in 4π-geometry is found to be (27.3±1.1) J and corresponding wall plug efficiency for X-ray generation is 1.52±.06%. X-ray emission, presumably due to bombarding activity of electrons in current sheath at the anode tip was dominant, which is confirmed by the pinhole images. The feasibility of the device as an intense X-ray source for radiography is demonstrated.  相似文献   

16.
The property of scrape-off layer (SOL) currents induced by a biased electrode is investigated by fully kinetic collisionless two-dimensional particle-in-cell (PIC) simulations. A reduced Vlasov–Darwin model is employed, which is capable of describing the low-frequency kinetic behavior without electromagnetic vacuum modes A linear decay distribution of electron currents parallel to the background magnetic field is exhibited. Simulation analyses indicate that the cross field ion current is a key factor in sheath formation and global current balance. The influences of electrode area, biasing voltage and plasma source on the SOL current profile are studied, respectively. Characteristic plasma parameters in the far SOL region of the EAST tokamak are used in simulations to assess the current driving ability of the electrode biasing method. Due to the limitations of computational power, the geometrical size of the simulation domain is significantly smaller than the realistic SOL, which may lead to an absence of the quasi-neutral region in the upstream plasma. At last, a heuristic method is proposed to calculate the upper bound of the total current strength.  相似文献   

17.
In the US, concrete containment buildings for commercial nuclear power plants have steel liners that act as the internal pressure boundary. The liner abuts the concrete, acting as the interior concrete form. The liner is attached to the concrete by either studs or by a continuous structural shape (such as a T-section or channel) that is either continuously or intermittently welded to the liner. Studs are commonly used in reinforced concrete containments, while prestressed containments utilize a structural element as the anchorage. The practice in some countries follows the US practice, while in other countries the containment does not have a steel liner. In this latter case, there is a true double containment, and the annular region between the two containments is vented.This paper will review the practice of design of the liner system prior to the consideration of severe accident loads (overpressurization loads beyond the design conditions).An overpressurization test of a 1:6 scale reinforced concrete containment at Sandia National Laboratories resulted in a failure mechanism in the liner that was not fully anticipated. Post-test analyses and experiments have been conducted to understand the failure better. This work and the activities that followed the test are reviewed. Areas in which additional research should be conducted are given.  相似文献   

18.
Core plasma rotation of both L-mode and H-mode discharges with ion cyclotron range of frequency(ICRF) minority heating(MH) scheme was measured with a tangential X-ray imaging crystal spectrometer on EAST(Experimental Advanced Superconducting Tokamak).Cocurrent central impurity toroidal rotation change was observed in ICRF-heated L-and H-mode plasmas.Rotation increment as high as 30 km/s was generated at ~1.7 MW ICRF power.Scaling results showed similar trend as the Rice scaling but with significant scattering,especially in L-mode plasmas.We varied the plasma current,toroidal field and magnetic configuration individually to study their effect on L-mode plasma rotation,while keeping the other major plasma parameters and heating unchanged during the scanning.It was found that larger plasma current could induce plasma rotation more efficiently.A scan of the toroidal magnetic field indicated that the largest rotation was obtained for on-axis ICRF heating.A comparison between lower-single-null(LSN)and double-null(DN) configurations showed that LSN discharges rendered a larger rotation change for the same power input and plasma parameters.  相似文献   

19.
Non-thermal plasma (NTP) devices produce excited and radical species that have higher energy levels than their ground state and are utilized for various applications.There are various types of NTP devices,with dielectric barrier discharge (DBD) reactors being widely used.These DBD devices vary in geometrical configuration and operating parameters,making a comparison of their performance in terms of discharge power characteristics difficult.Therefore,this study proposes a dimensionless parameter that is related to the geometrical features,and is a function of the discharge power with respect to the frequency,voltage,and capacitance of a DBD.The dimensionless parameter,in the form of a ratio of the discharge energy per cycle to the gap capacitive energy,will be useful for engineers and designers to compare the energy characteristics of devices systematically,and could also be used for scaling up DBD devices.From the results in this experiment and from the literature,different DBD devices are categorized into three separate groups according to different levels of the energy ratio.The larger DBD devices have lower energy ratios due to their lower estimated surface discharge areas and capacitive reactance.Therefore,the devices can be categorized according to the energy ratio due to the effects of the geometrical features of the DBD devices,since it affects the surface discharge area and capacitance of the DBD.The DBD devices are also categorized into three separate groups using the Kriegseis factor,but the categorization is different from that of the energy ratio.  相似文献   

20.
本文根据快中子反应堆生产电能的要求,把堆芯产生最大功率的问题描述为一个最优控制问题,求得最优中子通量分布。在此前提下,又根据采用氧化物燃料(UO_2-PuO_2)的快堆。在燃料循环周期内,增殖比在初始增殖比基础上随燃耗加深而逐渐下降的特点,用最优化方法解决了初始增殖比达到最大值的问题,为快堆设计提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号