首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Early clinical results with time-of-flight (TOF) positron emission tomography (PET) systems have demonstrated the advantages of TOF information in PET reconstruction. Reconstruction approaches in TOF-PET systems include list-mode and binned iterative algorithms as well as confidence-weighted analytic methods. List-mode iterative TOF reconstruction retains the resolutions of the data in the spatial and temporal domains without any binning approximations but is computationally intensive. We have developed an approach [DIRECT (direct image reconstruction for TOF)] to speed up TOF-PET reconstruction that takes advantage of the reduced angular sampling requirement of TOF data by grouping list-mode data into a small number of azimuthal views and co-polar tilts and depositing the grouped events into histo-images, arrays with the sampling and geometry of the final image. All physical effects are included in the system model and deposited in the same histo-image structure. Using histo-images allows efficient computation during reconstruction without ray-tracing or interpolation operations. The DIRECT approach was compared with 3-D list-mode TOF ordered subsets expectation maximization (OSEM) reconstruction for phantom and patient data taken on the University of Pennsylvania research LaBr (3) TOF-PET scanner. The total processing and reconstruction time for these studies with DIRECT without attention to code optimization is approximately 25%-30% that of list-mode TOF-OSEM to achieve comparable image quality. Furthermore, the reconstruction time for DIRECT is independent of the number of events and/or sizes of the spatial and TOF kernels, while the time for list-mode TOF-OSEM increases with more events or larger kernels. The DIRECT approach is able to reproduce the image quality of list-mode iterative TOF reconstruction both qualitatively and quantitatively in measured data with a reduced time.  相似文献   

2.
Accelerated image reconstruction using ordered subsets of projection data   总被引:58,自引:0,他引:58  
The authors define ordered subset processing for standard algorithms (such as expectation maximization, EM) for image restoration from projections. Ordered subsets methods group projection data into an ordered sequence of subsets (or blocks). An iteration of ordered subsets EM is defined as a single pass through all the subsets, in each subset using the current estimate to initialize application of EM with that data subset. This approach is similar in concept to block-Kaczmarz methods introduced by Eggermont et al. (1981) for iterative reconstruction. Simultaneous iterative reconstruction (SIRT) and multiplicative algebraic reconstruction (MART) techniques are well known special cases. Ordered subsets EM (OS-EM) provides a restoration imposing a natural positivity condition and with close links to the EM algorithm. OS-EM is applicable in both single photon (SPECT) and positron emission tomography (PET). In simulation studies in SPECT, the OS-EM algorithm provides an order-of-magnitude acceleration over EM, with restoration quality maintained.  相似文献   

3.
Respiratory motion during the collection of computed tomography (CT) projections generates structured artifacts and a loss of resolution that can render the scans unusable. This motion is problematic in scans of those patients who cannot suspend respiration, such as the very young or intubated patients. Here, the authors present an algorithm that can be used to reduce motion artifacts in CT scans caused by respiration. An approximate model for the effect of respiration is that the object cross section under interrogation experiences time-varying magnification and displacement along two axes. Using this model an exact filtered backprojection algorithm is derived for the case of parallel projections. The result is extended to generate an approximate reconstruction formula for fan-beam projections. Computer simulations and scans of phantoms on a commercial CT scanner validate the new reconstruction algorithms for parallel and fan-beam projections. Significant reduction in respiratory artifacts is demonstrated clinically when the motion model is satisfied. The method can be applied to projection data used in CT, single photon emission computed tomography (SPECT), positron emission tomography (PET), and magnetic resonance imaging (MRI).  相似文献   

4.
Remarkable progress in positron emission tomography (PET) development has occurred in recent years, in hardware, software, and computer implementation of image reconstruction. Recent development in PET scanners such as the high-resolution research tomograph (HRRT) developed by CTI (now Siemens) represents such a case and is capable of greatly enhanced resolution as well as sensitivity. In these PET scanners, the amount of coincidence line data collected contains more than 4.5 x 10(9) coincidence lines of response generated by as many nuclear detectors as 120 000. This formidable amount of data and the reconstruction of this data set pose a real problem in HRRT and have also been of the major bottle neck in further developments of high resolution PET scanners as well as their applications. In these classes of PET scanners, therefore, obtaining one set of reconstructed images often requires many hours of image reconstruction. For example, in HRRT with full data collection in a normal brain scan (using SPAN 3), the image reconstruction time is close to 80 min, making it practically impossible to attempt any list-mode-based dynamic imaging since the image reconstruction time would take many days (as much as 43 h or more for 32-frame dynamic image reconstruction). To remedy this data-handling problem in image reconstruction, we developed a new algorithm based on the symmetry properties of the projection and backprojection processes, especially in the 3-D OSEM algorithm where multiples of projection and back-projection are required. In addition, the single-instruction multiple-data (SIMD) technique also allowed us to successfully incorporate the symmetry properties mentioned above, thereby effectively reducing the total image reconstruction time to a few minutes. We refer to this technique as the symmetry and SIMD-based projection-backprojection (SSP) technique or algorithm and the details of the technique will be discussed and an example of the application of the technique to the HRRT's OSEM algorithm will be presented as a demonstration.  相似文献   

5.
Yu  Xiaodong  Wang  Hao  Feng  Wu-chun  Gong  Hao  Cao  Guohua 《Journal of Signal Processing Systems》2019,91(3-4):321-338

The algebraic reconstruction technique (ART) is an iterative algorithm for CT (i.e., computed tomography) image reconstruction that delivers better image quality with less radiation dosage than the industry-standard filtered back projection (FBP). However, the high computational cost of ART requires researchers to turn to high-performance computing to accelerate the algorithm. Alas, existing approaches for ART suffer from inefficient design of compressed data structures and computational kernels on GPUs. Thus, this paper presents our CUDA-based CT image reconstruction tool based on the algebraic reconstruction technique (ART) or cuART. It delivers a compression and parallelization solution for ART-based image reconstruction on GPUs. We address the under-performing, but popular, GPU libraries, e.g., cuSPARSE, BRC, and CSR5, on the ART algorithm and propose a symmetry-based CSR format (SCSR) to further compress the CSR data structure and optimize data access for both SpMV and SpMV_T via a column-indices permutation. We also propose sorting-based global-level and sorting-free view-level blocking techniques to optimize the kernel computation by leveraging different sparsity patterns of the system matrix. The end result is that cuART can reduce the memory footprint significantly and enable practical CT datasets to fit into a single GPU. The experimental results on a NVIDIA Tesla K80 GPU illustrate that our approach can achieve up to 6.8x, 7.2x, and 5.4x speedups over counterparts that use cuSPARSE, BRC, and CSR5, respectively.

  相似文献   

6.
For modern time-of-flight (TOF) positron emission tomography (PET) systems, in which the number of possible lines of response and TOF bins is much larger than the number of acquired events, the most appropriate reconstruction approaches are considered to be list-mode methods. However, their shortcomings are relatively high computational costs for reconstruction and for sensitivity matrix calculation. Efficient treatment of TOF data within the proposed DIRECT approach is obtained by 1) angular (azimuthal and co-polar) grouping of TOF events to a set of views as given by the angular sampling requirements for the TOF resolution, and 2) deposition (weighted-histogramming) of these grouped events, and correction data, into a set of ldquohisto-images,rdquo one histo-image per view. The histo-images have the same geometry (voxel grid, size and orientation) as the reconstructed image. The concept is similar to the approach involving binning of the TOF data into angularly subsampled histo-projections - projections expanded in the TOF directions. However, unlike binning into histo-projections, the deposition of TOF events directly into the image voxels eliminates the need for tracing and/or interpolation operations during the reconstruction. Together with the performance of reconstruction operations directly in image space, this leads to a very efficient implementation of TOF reconstruction algorithms. Furthermore, the resolution properties are not compromised either, since events are placed into the image elements of the desired size from the beginning. Concepts and efficiency of the proposed data partitioning scheme are demonstrated in this work by using the DIRECT approach in conjunction with the row-action maximum-likelihood (RAMLA) algorithm.  相似文献   

7.
Iterative image reconstruction algorithms play an increasingly important role in modern tomographic systems, especially in emission tomography. With the fast increase of the sizes of the tomographic data, reduction of the computation demands of the reconstruction algorithms is of great importance. Fourier-based forward and back-projection methods have the potential to considerably reduce the computation time in iterative reconstruction. Additional substantial speed-up of those approaches can be obtained utilizing powerful and cheap off-the-shelf fast Fourier transform (FFT) processing hardware. The Fourier reconstruction approaches are based on the relationship between the Fourier transform of the image and Fourier transformation of the parallel-ray projections. The critical two steps are the estimations of the samples of the projection transform, on the central section through the origin of Fourier space, from the samples of the transform of the image, and vice versa for back-projection. Interpolation errors are a limitation of Fourier-based reconstruction methods. We have applied min-max optimized Kaiser-Bessel interpolation within the nonuniform FFT (NUFFT) framework and devised ways of incorporation of resolution models into the Fourier-based iterative approaches. Numerical and computer simulation results show that the min-max NUFFT approach provides substantially lower approximation errors in tomographic forward and back-projection than conventional interpolation methods. Our studies have further confirmed that Fourier-based projectors using the NUFFT approach provide accurate approximations to their space-based counterparts but with about ten times faster computation, and that they are viable candidates for fast iterative image reconstruction.  相似文献   

8.
一种新的基于GPU实现的锥束CT正投影算法   总被引:5,自引:1,他引:4       下载免费PDF全文
赵星  胡晶晶  潘晓川  张朋 《电子学报》2009,37(6):1165-1169
锥束CT成像算法的正投影计算量大,消耗时间长.为此,本文提出了一种基于GPU实现的正投影加速算法.该算法在GPU的可编程管线中,通过纹理映射方法实现了圆轨迹锥束扫描模式下正投影计算.由于投影逐片并行计算,因此该算法具有较高的计算速率,且支持全浮点运算精度.在该正投影算法的基础上,本文还给出了三种算法优化方法.这些优化方法进一步提高了算法的执行效率.通过对Shepp-logan模型的正投影计算以及应用于迭代法进行三维图像重建等实验验证了本文算法的优点.  相似文献   

9.
Fourier-based approaches for three-dimensional (3-D) reconstruction are based on the relationship between the 3-D Fourier transform (FT) of the volume and the two-dimensional (2-D) FT of a parallel-ray projection of the volume. The critical step in the Fourier-based methods is the estimation of the samples of the 3-D transform of the image from the samples of the 2-D transforms of the projections on the planes through the origin of Fourier space, and vice versa for forward-projection (reprojection). The Fourier-based approaches have the potential for very fast reconstruction, but their straightforward implementation might lead to unsatisfactory results if careful attention is not paid to interpolation and weighting functions. In our previous work, we have investigated optimal interpolation parameters for the Fourier-based forward and back-projectors for iterative image reconstruction. The optimized interpolation kernels were shown to provide excellent quality comparable to the ideal sinc interpolator. This work presents an optimization of interpolation parameters of the 3-D direct Fourier method with Fourier reprojection (3D-FRP) for fully 3-D positron emission tomography (PET) data with incomplete oblique projections. The reprojection step is needed for the estimation (from an initial image) of the missing portions of the oblique data. In the 3D-FRP implementation, we use the gridding interpolation strategy, combined with proper weighting approaches in the transform and image domains. We have found that while the 3-D reprojection step requires similar optimal interpolation parameters as found in our previous studies on Fourier-based iterative approaches, the optimal interpolation parameters for the main 3D-FRP reconstruction stage are quite different. Our experimental results confirm that for the optimal interpolation parameters a very good image accuracy can be achieved even without any extra spectral oversampling, which is a common practice to decrease errors caused by interpolation in Fourier reconstruction.  相似文献   

10.
An efficient iterative reconstruction method for positron emission tomography (PET) is presented. The algorithm is basically an enhanced EM (expectation maximization) algorithm with improved frequency response. High-frequency components of the ratio of measured to calculated projections are extracted and are taken into account for the iterative correction of image density in such a way that the correction is performed with a uniform efficiency over the image plane and with a flat frequency response. As a result, the convergence speed is not so sensitive to the image pattern or matrix size as the standard EM algorithm, and nonuniformity of the spatial resolution is significantly improved. Nonnegativity of the reconstructed image is preserved. Simulation studies have been made assuming two PET systems: a scanning PET with ideal sampling and a stationary PET with sparse sampling. In the latter, a "bank array" of detectors is employed to improve the sampling in the object plane. The new algorithm provides satisfactory images by two or three iterations starting from a flat image in either case. The behavior of convergence is monitored by evaluating the root mean square of C(b)-1 where C(b) is the correction factor for pixel b in the EM algorithm. The value decreases rapidly and monotonically with iteration number. Although the theory is not accurate enough to assure the stability of convergence, the algorithm is promising to achieve significant saving in computation compared to the standard EM algorithm.  相似文献   

11.
A procedure that speeds up convergence during the initial stage (the first 100 forward and backward projections) of Landweber-type algorithms, for iterative image reconstruction for positron emission tomography (PET), which include the Landweber, generalized Landweber, and steepest descent algorithms, is discussed. The procedure first identifies the singular vector associated with the maximum singular value of the PET system matrix, and then suppresses projection of the data on this singular vector after a single Landweber iteration. It is shown that typical PET system matrices have a significant gap between their two largest singular values; hence, this suppression allows larger gains in subsequent iterations, speeding up convergence by roughly a factor of three.  相似文献   

12.
压缩传感(CS)理论是在已知信号具有稀疏性或可压缩性的条件下对信号数据进行采集、编解码的新理论。压缩传感采用非自适应线性投影来保持信号的原始结构,能通过数值最优化问题准确重构原始信号。压缩传感以远低于奈奎斯特频率进行采样,在高分辨压缩成像系统、视频图像采集系统、雷达成像以及MRI医疗成像等领域有着广阔的应用前景。阐述了压缩传感理论框架以及信号稀疏表示、CS编解码模型,并进行了压缩传感与探地雷达联合反演目标成像。反演结果表明,随机孔径压缩传感成像算法比递归反向投影算法和最小二乘法所需数据量少,成像效果好,目标旁瓣小,对噪声的鲁棒性更好。  相似文献   

13.
After a brief discussion of the algebraic reconstruction techniques (ART), we introduce the attenuation problem in positron emission tomography (PET). We anticipate that a generalization of ART, the so-called cyclic subgradient projection (CSP) method, may be useful for solving this problem. This, however, has not been successfully realized, due to the fact that data collected by our proposed stationary PET detector ring are too sparsely sampled. That this is, in fact, a major problem is demonstrated by showing that ordinary ART produces reconstructions with unacceptably strong artifacts even on perfect (no attenuation) data collected according to the PET geometry. We demonstrate that the source of this artifact is the sparse sampling, and we propose the use of interpolated rays to overcome the problem. This approach is successful, as is illustrated by showing reconstructions from sparsely sampled data by ART with interpolated rays.  相似文献   

14.
CT数据的获取过程和CT图像的重建过程与图形学的渲染过程极其相似,因此利用图形处理器(GPU)来加速CT重建算法成为了近年来CT研究的热点之一.本文根据单层螺旋CT数据的特点,构造了"平行-扇束"投影模式,实现了基于GPU的单层螺旋CT的三维图像重建算法.数值实验表明,与CPU上的分层重建相比重建速度提高10倍以上.  相似文献   

15.
We describe a fast forward and back projector pair based on inverse Fourier rebinning for use in iterative image reconstruction for fully three-dimensional (3-D) positron emission tomography (PET). The projector pair is used as part of a factored system matrix that takes into account detector-pair response by using shift-variant sinogram blur kernels, thereby combining the computational advantages of Fourier rebinning with iterative reconstruction using accurate system models. The forward projector consists of a two-dimensional (2-D) projector, which maps 3-D images into 2-D direct sinograms, followed by exact inverse rebinning which maps the 2-D into fully 3-D sinograms. The back projector is implemented as the transpose of the forward projector and differs from the true exact rebinning operator in the sense that it does not require reprojection to compute missing line of responses (LORs). We compensate for two types of inaccuracies that arise in a cylindrical PET scanner when using inverse Fourier rebinning: 1) nonuniform radial sampling and 2) nonconstant oblique angles in the radial direction in a single oblique sinogram. We examine the effects of these corrections on sinogram accuracy and reconstructed image quality. We evaluate performance of the new projector pair for maximum a posteriori (MAP) reconstruction of simulated and in vivo data. The new projector results in only a small loss in resolution towards the edge of the field-of-view when compared to the fully 3-D geometric projector and requires an order of magnitude less computation.  相似文献   

16.
One of the greatest challenges facing iterative fully-3-D positron emission tomography (PET) reconstruction is the issue of long reconstruction times due to the large number of measurements for 3-D mode as compared to 2-D mode. A rotate-and-slant projector has been developed that takes advantage of symmetries in the geometry to compute volumetric projections to multiple oblique sinograms in a computationally efficient manner. It is based upon the 2-D rotation-based projector using the three-pass method of shears, and it conserves the 2-D rotator computations for multiple projections to each oblique sinogram set. The projector is equally applicable to both conventional evenly-spaced projections and unevenly-spaced line-of-response (LOR) data. The LOR-based version models the location and orientation of the individual LORs (i.e., the arc-correction), providing an ordinary Poisson reconstruction framework. The projector was implemented in C with several optimizations for speed, exploiting the vertical symmetry of the oblique projection process, depth compression, and array indexing schemes which maximize serial memory access. The new projector was evaluated and compared to ray-driven and distance-driven projectors using both analytical and experimental phantoms, and fully-3-D iterative reconstructions with each projector were also compared to Fourier rebinning with 2-D iterative reconstruction. In terms of spatial resolution, contrast, and background noise measures, 3-D LOR-based iterative reconstruction with the rotate-and-slant projector performed as well as or better than the other methods. Total processing times, measured on a single cpu Linux workstation, were approximately 10x faster for the rotate-and-slant projector than for the other 3-D projectors studied. The new projector provided four iterations fully-3-D ordered-subsets reconstruction in as little as 15 s--approximately the same time as FORE + 2-D reconstruction. We conclude that the rotate-and-slant projector is a viable option for fully-3-D PET, offering quality statistical reconstruction in times only marginally slower than 2-D or rebinning methods.  相似文献   

17.
When performing dynamic studies using emission tomography the tracer distribution changes during acquisition of a single set of projections. This is particularly true for some positron emission tomography (PET) systems which, like single photon emission computed tomography (SPECT), acquire data over a limited angle at any time, with full projections obtained by rotation of the detectors. In this paper, an approach is proposed for processing data from these systems, applicable to either PET or SPECT. A method of interpolation, based on overlapped parabolas, is used to obtain an estimate of the total counts in each pixel of the projections for each required frame-interval, which is the total time to acquire a single complete set of projections necessary for reconstruction. The resultant projections are reconstructed using traditional filtered backprojection (FBP) and tracer kinetic parameters are estimated using a method which relies on counts integrated over the frame-interval rather than instantaneous values. Simulated data were used to illustrate the technique's capabilities with noise levels typical of those encountered in either PET or SPECT. Dynamic datasets were constructed, based on kinetic parameters for fluoro-deoxy-glucose (FDG) and use of either a full ring detector or rotating detector acquisition. For the rotating detector, use of the interpolation scheme provided reconstructed dynamic images with reduced artefacts compared to unprocessed data or use of linear interpolation. Estimates for the metabolic rate of glucose had similar bias to those obtained from a full ring detector.  相似文献   

18.
With continuing improvements in spatial resolution of positron emission tomography (PET) scanners, small patient movements during PET imaging become a significant source of resolution degradation. This work develops and investigates a comprehensive formalism for accurate motion-compensated reconstruction which at the same time is very feasible in the context of high-resolution PET. In particular, this paper proposes an effective method to incorporate presence of scattered and random coincidences in the context of motion (which is similarly applicable to various other motion correction schemes). The overall reconstruction framework takes into consideration missing projection data which are not detected due to motion, and additionally, incorporates information from all detected events, including those which fall outside the field-of-view following motion correction. The proposed approach has been extensively validated using phantom experiments as well as realistic simulations of a new mathematical brain phantom developed in this work, and the results for a dynamic patient study are also presented.   相似文献   

19.
Many image-reconstruction methods have been proposed to improve the spatial resolution of positron emission tomography (PET) images and, thus, to produce better quantification. However, these techniques, which are designed for static images, may be inadequate for good reconstruction from dynamic data. The authors present a simple, but effective, reconstruction approach intended specifically for dynamic studies. First, the level of noise in dynamic PET data is reduced by smoothing along the time axis using a low-order approximation. Next, the denoised sinograms are restored spatially by the method of projections onto convex sets. Finally, images are reconstructed from the restored sinograms by ordinary filtered backprojection. The authors present experimental results that demonstrate substantial improvements in region-of-interest quantification in actual and simulated dopamine D-2 neuroreceptor-imaging studies of a monkey brain  相似文献   

20.
For iterative, fully 3D positron emission tomography (PET) image reconstruction intrinsic symmetries can be used to significantly reduce the size of the system matrix. The precalculation and beneficial memory-resident storage of all nonzero system matrix elements is possible where sufficient compression exists. Thus, reconstruction times can be minimized independently of the used projector and more elaborate weighting schemes, e.g., volume-of-intersection (VOI), are applicable. A novel organization of scanner-independent, adaptive 3D projection data is presented which can be advantageously combined with highly rotation-symmetric voxel assemblies. In this way, significant system matrix compression is achieved. Applications taking into account all physical lines-of-response (LORs) with individual VOI projectors are presented for the Siemens ECAT HR+ whole-body scanner and the Siemens BrainPET, the PET component of a novel hybrid-MR/PET imaging system. Measured and simulated data were reconstructed using the new method with ordered-subset-expectation-maximization (OSEM). Results are compared to those obtained by the sinogram-based OSEM reconstruction provided by the manufacturer. The higher computational effort due to the more accurate image space sampling provides significantly improved images in terms of resolution and noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号