首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本研究采用WC004-A,WC004-B的两种超细碳化钨粉末,在不同的烧结温度下制备硬质合金,利用扫描电镜和激光粒度仪等检测方法对碳化钨粉末进行表征,利用金相显微镜和扫描电镜对合金显微组织进行分析。研究在不同烧结温度下超细碳化钨粉末的均匀性对硬质合金金相组织结构以及物理力学性能的影响。研究结果表明,超细碳化钨粉末均匀性会影响硬质合金的均匀性,并且烧结温度也是关键的影响因素,比表面积2.7m2/g,激光粒度分布(D90-D10)/D50为1.54的超细碳化钨粉末,在1 390℃烧结后可以制备出显微组织均匀,性能优异的超细晶硬质合金。  相似文献   

2.
采用球磨破碎分级的氧化钨为原料,氢还原制备出平均粒度为30 nm的纳米钨粉,并分别以干磨搅拌和添加适量分散剂的湿式球磨的方式配碳,然后置于通氢钼丝碳化炉中在1180℃长时间碳化,得到了粒度分别为109和148 nm的碳化钨粉末,继而于低压真空烧结炉中,在1360℃的温度下烧结制备出WC-7%Co(质量分数)烧结体,研究了纳米钨粉形貌结构对纳米碳化钨粉末及其超细晶硬质合金性能的影响。通过比表面测定仪和费氏粒度仪测定了粉体的比表面和粒度,采用X射线衍射(XRD)分析了碳化产物的相成分,用扫描电镜(SEM)观察了粉末的形貌和烧结体的显微组织结构,按硬质合金性能测试标准对WC-Co烧结体的物理和力学性能进行了测定。结果表明,湿磨配碳强制破坏了纳米钨颗粒,呈其氧化钨前驱体的团聚状的形貌结构,可以改善纳米钨粉和碳粉弥散分布的均匀性,更有利于获得颗粒细小、均匀,分散性好的优质纳米碳化钨粉,其所制备的超细晶WC-7%Co硬质合金,显微组织均匀,综合性能优,硬度和抗弯强度分别为HRA 93.7和4450 MPa。  相似文献   

3.
简要介绍了采用钨钴液相复合-喷雾干燥-流态化热化学转化工艺(SCP)合成超细碳化钨钴复合粉末的新方法,以该粉末制备的硬质合金工艺进行了初步探讨,结果表明:这种方法合成的碳化钨钴复合粉末具有分子水平的均匀组成及超细的平均晶粒度,制备的硬质合金硬度HRA大于92.0,抗弯强度大于3300MPa。  相似文献   

4.
WC-Co复合粉末的流态化合成及其应用   总被引:4,自引:1,他引:3  
简要介绍了采用钨钴液相复合—喷雾干燥—流态化热化学转化工艺(SCP) 合成超细碳化钨钴复合粉末的新方法,以该粉末制备的硬质合金工艺进行了初步探讨,结果表明:这种方法合成的碳化钨钴复合粉末具有分子水平的均匀组成及超细的平均晶粒度( 小于100nm),制备的硬质合金硬度HRA大于92.0,抗弯强度大于3300 MPa  相似文献   

5.
利用放电等离子烧结技术得到了近全致密的无粘结相超细纯碳化钨材料。烧结前后平均粒径达200nm的超细组织基本维持不变。该材料的硬度明显超过了常规的碳化钨基硬质合金,可以用作优异的硬质材料。  相似文献   

6.
以经喷雾转化、煅烧、低温还原碳化工艺制备出的纳米晶WC-6%Co复合粉末为原料,不添加晶粒长大抑制剂,经湿磨、成形和压力烧结工艺,成功制备出WC晶粒度在400nm左右的超细晶WC-Co硬质合金,并与传统工艺制备的合金进行性能对比。结果表明:复合粉末制备的合金中WC晶粒大小、组元分布更加均匀,晶粒无异常长大现象,强度和硬度均高于传统工艺制备的合金。  相似文献   

7.
专利文摘     
专利名称:碳化钨铝硬质合金纳米粉末的制备方法专利申请号:01129544.9公开号:1328889申请人:中国科学院长春应用化学研究所本发明属于碳化钨铝硬质合金W1-xAlXC,X=0-0.86纳米粉末的制备方法。该方法以钨粉、铝粉、碳粉和碳化钨粉为原料,通过机械合金化方法合成W1-xAlXC。工艺简单、操作方便、室温合成,产物为高活性的纳米粉有利于进一步的粉末冶金烧结制件。专利名称:一种超细钨—铜复合粉的制备方法专利申请号:02114601.2公开号:1392012申请人:西北工业大学提供了一种超细钨—铜复合粉体的制备方法。为改进钨—铜复合粉体的均匀性和材…  相似文献   

8.
利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)以及力学性能测试分析,研究了不同粒度的WC和Co原始粉末经不同时间球磨后的微观形貌;并对球磨后的复合粉末添加不同配比的晶粒抑制剂,进行真空热压烧结制备了超细晶硬质合金,考察了不同配比的晶粒抑制剂对超细晶硬质合金组织和力学性能的影响。结果表明,使用原始细颗粒粉末,经较短时间的球磨处理就可以达到较好的细化效果;复合添加VC+Cr3C2或VC+TaC晶粒抑制剂对硬质合金晶粒的细化效果明显好于单一添加VC的细化效果;添加Cr3C2后WC晶粒呈近圆形,且硬质合金抗弯强度有明显提高;添加TaC后的WC晶粒呈三角形或四边形,促进了硬质合金的硬度提高。  相似文献   

9.
超细硬质合金中添加抑制剂的研究进展   总被引:1,自引:0,他引:1  
生产超细硬质合金的关键是粉末的制备和压坯的烧结,并且超细硬质合金在烧结过程中容易引起晶粒长大。有关研究表明在超细硬质合金中添加抑制剂可以有效地控制硬质合金中晶粒的长大。近几年以来国内外对超细硬质合金中添加抑制剂进行了大量的研究。所以,本文就超细硬质合金中添加抑制剂的作用机理、种类、方法,以及抑制剂对超细硬质合金组织和性能的影响进行了综述。  相似文献   

10.
新型直接碳化法制备超细WC粉及其烧结体的结构与性能   总被引:2,自引:0,他引:2  
本文对直接碳化法制备超细WC粉进行了研究,以三氧化钨和炭黑为原料,制备方法为:首先湿磨包含炭黑与三氧化钨的混合物,其中碳源数量大于热力学反应温度下制备WC所需的化学计量;湿磨好的浆料经干燥后,在非还原气氛N2中,于1000~1100℃直接碳化得到包含完全渗碳的碳化钨和过量碳的中间产物;之后调节其碳含量至(6.13 ±0.05)%.对最终所得碳化钨粉进行粒度及碳、氧含量分析,并以其为原料,按YG6配钴,添加晶粒长大抑制剂,用真空烧结法制备出了显微结构均匀、矫顽磁力≥39.2kA/m、平均晶粒度为0.4μm左右的超细硬质合金.  相似文献   

11.
超细/纳米硬质合金及晶粒长大抑制剂的研究   总被引:12,自引:1,他引:11  
超细/纳米WC-Co硬质合金由于其优越的性能而获得更加广泛的应用,从而成为近年来各国政府研究学者及厂矿企业十分关注的热门话题。本文综述了国内外在超细/纳米硬质合金及晶粒长大抑制剂方面的研究进展。重点介绍了超细/纳米WC-Co复合粉末的制备技术和新的烧结工艺以及晶粒长大抑制剂的种类、添加方式和作用机理。  相似文献   

12.
纳米钨粉的微波碳化   总被引:2,自引:0,他引:2  
超细晶硬质合金具有优异的性能,而纳米级碳化钨是其制备的直接原料.采用酚醛树脂作为供碳源,研究了微波加热对纳米钨粉碳化过程的作用.研究发现,在微波碳化时只依靠钨粉自身发热不能完成碳化过程,而采用加入微波吸收物质的混合加热方式能提供足够的热量得到完全的碳化钨相;微波碳化时间很短,能有效防止碳化钨的过分长大.平均粒度50 nm的钨粉经过微波加热碳化得到平均粒度为84 nm的碳化钨粉末.  相似文献   

13.
WC-Co硬质合金的强韧化   总被引:2,自引:0,他引:2  
从纳米WC粉末的制备,添加稀土元素,烧结工艺等多方面综述了硬质合金强韧化的主要途径。指出:使用纳米WC粉末,添加适量稀土元素,采用先进的烧结工艺是制备超细或纳米晶高性能硬质合金的有效方法。  相似文献   

14.
中国专利     
用流化床还原碳化一次制备硬质合金复合粉 在流化床中用氢还原、含碳气体碳化一次制备超细硬质合金复合粉。用化学方法制备原料复合粉末,可以满足任一牌号对成分的要求。将原料复合粉置入流化床中,用惰性气体或氢气作流化操作气体,进行氢还原,碳化时加入含碳气体在750~1500℃的温度下进行碳化1~10h,即可获得极细的超细硬质合金复合粉,且其粒度可以通过工艺调整。这种工艺制备的复合粉粒度分布窄、产率高、工艺简单,切实可行,是一种极具推广价值的制备超细硬质合金复合粉的新技术。(专利公开号:CN-1086753A;发明人:魏明坤等;武汉工业大学)  相似文献   

15.
《中国钨业》2020,(2):56-60
为了研究在超细WC粉的制备过程中,碳化钒(VC)添加对超细碳化钨(WC)粉末粒度和相形成的影响,对不同VC添加量和不同碳化温度下制备的超细WC粉末的粒度、相成分和微观形貌进行了分析。研究结果表明:在1 400℃碳化时,当碳化钒的添加量由0%增加到10%时,WC的BET粒度由0.274μm降到0.159μm,WC粉末单颗粒粒度在逐渐减小,WC粉末颗粒的聚集程度增加。随着碳化钒的添加量的增加,碳化钒相衍射峰强度增大,WC的衍射强度降低。此外,碳化温度提高到1 600℃时,WC粉末的BET粒度增大,VC晶粒结晶更完整。  相似文献   

16.
中国超细和纳米晶WC-Co硬质合金的研究开发概况   总被引:8,自引:4,他引:8  
林晨光 《中国钨业》2005,20(2):19-23
概述了我国超细和纳米晶W C-Co硬质合金的研究开发现状。我国在制备超细晶硬质合金100nm左右的纳米级粉末原料(W C,W C-Co复合粉末)的批量化生产技术及烧结过程中抑制W C晶粒长大等关键技术方面已取得重要进展,可批量生产0.4~0.6滋m级超细晶硬质合金。添加新型VC基二元晶粒生长抑制剂可实验室制备W C平均晶粒度70nm的纳米晶硬质合金并获得优异性能。在此基础上,对生产技术的重点方向进行研究开发,推动我国超细晶硬质合金向产业化发展的基础条件已趋于成熟。  相似文献   

17.
采用三氧化钨直接还原碳化法制备超细碳化钨粉,研究了碳化温度,碳化时间及配碳量等工艺参数对合成产物的物相和颗粒形貌的影响,并对反应机理进行了探讨。结果表明,在氮气气氛下,采用直接还原碳化法制备超细碳化钨粉的最佳工艺参数为:碳化温度1200℃,碳化时间3h,配碳量0.21。  相似文献   

18.
将原位合成的WC-6Co复合粉末添加到300 L、转速50 Hz滚动球磨中湿磨,添加Co粉、晶粒长大抑制剂、石蜡、酒精,湿磨48 h,卸料、过孔径45 μm筛,采用闭式压力喷雾干燥塔制备得到WC-7Co~WC-15Co混合料粉末,对制备混合料粉末形貌、粒度分布、物相、成分进行分析,结果表明:添加Co粉配成WC-Co混合料,当混合料的Co质量分数超过10%,团聚现象明显增强,团聚颗粒明显增大;随着添加Co粉质量分数增加,混合料中氧质量分数增高,松装密度不断减小.将制备得到的WC-7Co~WC-15Co混合料掺成型剂,挤压成型,低压烧结等工序制备超细YG7X~YG15X硬质合金.研究添加不同Co质量分数WC-6Co复合粉末制备YG7X~YG15X超细硬质合金,Co对制备硬质合金的金相组织、形貌、物理力学性能的影响,结果表明:随着添加Co质量分数增加,制备的超细硬质合金硬度、密度不断降低,抗弯强度和断裂韧性先增大、后减小;制备的超细YG7X硬质合金的硬度最高HV30为2 150,抗弯强度最低为3 200 MPa;制备YG10超细硬质合金的抗弯强度最高为4 950 MPa,断裂韧性最高为11.8 MPa·m1/2.   相似文献   

19.
制备纳米/超细晶WC-Co类硬质合金的两大关键因素是优质纳米/超细晶WC-Co复合粉末的制备和烧结过程中晶粒长大过程的控制。从纳米/超细晶WC-Co复合粉末的制备技术和纳米/超细晶硬质合金的烧结技术两方面,综合评述了近年来国内外的研究进展,并展望了纳米/超细晶硬质合金的发展前景和今后研究开发的重点。  相似文献   

20.
首先探究了以Nb2O5、Co和炭黑的原位反应制备纳米NbC-Co复合粉末的最佳工艺,然后以此复合粉作为添加剂,研究了其对低压烧结制备WC-Co硬质合金组织和性能的影响。热力学计算和原位反应实验结果表明,原料粉末中未添加Co时存在明显的Nb2O5→NbO2→NbC两段反应过程,而添加Co不仅显著降低了反应发生温度,还使Nb2O5的还原、碳化两步反应几乎同时进行。通过优化原料粉末的配碳量、反应温度,制备的NbC-Co复合粉物相纯净,具有较低的氧含量,平均粒径为82 nm。添加纳米NbC-Co使制备的WC-Co硬质合金的晶粒尺寸由0.7μm降低至0.48μm,组织更为均匀,室温和高温硬度均明显提高。即使温度达到800℃,制备的WC-12Co-1NbC硬质合金的硬度仍维持在890HV30。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号