首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The flexural strength of MgO-partially stabilized zirconia was evaluated as a function of temperature (20–1300 °C in air environment), applied stress and time. The indentation-induced-flaw technique did not produce well-defined symmetrical cracks of controlled size, whose length (on the tensile surface) or depth (on the fracture face) can be measured unambiguously, and therefore it should not be used for measuring fracture toughness. The sudden decrease in fracture strength at moderately low temperatures (200–800 °C) is believed to be due to stability of the tetragonal phase and relative decrease in the extent of the stress-induced martensitic phase transformation of the tetragonal to monoclinic phase. Flexural stress rupture testing at 500–800 °C in air indicated the material's susceptibility to time-dependent failure, and outlines safe applied stress levels for a given temperature. Stress rupture testing at 1000 °C and above at low applied stress levels showed bending of specimens, indicating the onset of plasticity or viscous flow of the glassy phase and consequent degradation of material strength.  相似文献   

2.
The flexural strength of yttria-partially stabilized zirconia was evaluated as a function of temperature (20–1000 °C in air), applied stress and time. The material was susceptible to strength degradation at low temperatures (200 and 300 °C) due to the phase transformation of the tetragonal structure to monoclinic, possibly accompanied by microcracking. In this temperature range, the material was incapable of sustaining low applied stress levels of 276 MPa for any significant duration (> 100 h < 500 h). Stress rupture testing at 600 °C and above identified the onset of viscous flow of the glassy phase and consequent degradation of material strength.  相似文献   

3.
The combination of a filter cake forming process and hot isostatic pressing was applied to prepare hydroxyapatite composites containing dispersed tetragonal zirconia polycrystal (TZP) with high strength and toughness. Fine TZP powder was dispersed into as-synthesized hydroxyapatite slurry, formed with the filter cake process and hot isostatically pressed at 800–1150 °C at 100 MPa for 2 h. The temperature needed for densification increased with increasing TZP content; 1100 °C was needed to fully densify the composite with 26.8 wt% TZP. No phase change was found in TZP nor in the hydroxyapatite phase up to the maximum temperature examined in hot isostatic pressing. Significant phase change was found in specimens annealed in air at 1200 °C. The strength and toughness achieved were respectively 190 MPa and 2.3 MPa m1/2. These values were approximately 20% and 100% higher than the corresponding values for hydroxyapatite ceramics without TZP particle dispersion.  相似文献   

4.
Dense yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) +28 vol% alumina nanocomposite ceramics with and without 17 vol% oxynitride glass were fabricated at 1380°C using microwave sintering. The specimens were uniaxially compressed in the temperature range 1250 to 1400°C. Strain rates as high as 10–4 (s–1) were measured at 1350°C and 90 MPa in the glass-free specimens with the stress exponent of 1.5. Similar strain rates were measured at lower compressive stresses in the counterpart glass-containing specimens. The stress exponent in the glass-containing specimens changed from 1.0 at 1250°C to 2.0 at higher temperatures. Dynamic grain growth of the alumina grains was inhibited in the presence of the oxynitride glass. Plastic deformation at lower temperatures in glass-containing alloy occurred by cooperative grain boundary sliding, aided by viscous flow of the grain boundary glassy phase. The changes in the deformation behavior at higher temperatures were related to crystallization of the glass and simultaneous plastic deformation by grain boundary sliding.  相似文献   

5.
The present work investigates the tensile creep behavior (deformation and rupture) at 1100–1300°C in air of a 3-D woven Si-Ti-C-O (Tyranno) fiber/SiC-based matrix composite with and without glass sealant. The composite contained Si-Ti-C-O fibers with an additional surface modification in order to improve interface properties. Although a significant decrease in tensile strength was observed in the unsealed composite beyond 1000°C in air (and attributed to oxidation of the fiber/matrix interface), the composite with glass sealant possessed excellent mechanical properties for short-term (<1 hr.) exposure in air. In this study, tensile creep testing was conducted at 1100–1300°C in air and the effect of glass sealant on medium- and long-term strength was investigated. In addition, chemical stability of the glass sealant was evaluated by X-ray diffraction analysis (XRD) and energy dispersive X-ray spectrometer (EDS). The creep rupture behavior of the composite with glass sealant under long-term exposure is suggested to depend on several factors including decomposition, evaporation, and crystallization of the glass sealant material, in addition to the applied stress.  相似文献   

6.
Multiphase composites of yttria- and ceria-doped tetragonal zirconia agglomerates (10–50 m) dispersed into an alumina or alumina-zirconia matrix were sintered at 1500–1600 °C in air, followed by post-Hot Isostatic Pressing (HIP) at 1450°C and 150 MPa in an Ar gas atmosphere. The relative density of the recovered composites was above 98% of the theoretical density. By chemically etching on the surface of zirconia agglomerates, the sinterability of composites was apparently improved; and no microcracks nor pores were observed at the interface of agglomerate and matrix. According to scanning electron microscopy (SEM) observation, tetragonal and tetragonal-monoclinic zirconia agglomerates were highly dispersed into the alumina or alumina-zirconia matrix. The multiphase composites containing 10 vol% spherical agglomerates demonstrate the relatively low value of bending strength, < 400 MPa, and a high value of fracture toughness, > 11 MPa m1/2. The crack propagation introduced by Vickers indentation was efficiently suppressed and deflected by the agglomerates.  相似文献   

7.
The flexural strength of hot-pressed alumina and SiC-whisker-reinforced alumina composite were evaluated as a function of temperature (20 to 1400° C in air environment), applied stress and time. Two mechanistic regimes were manifest in the temperature dependence of the fracture stress. A temperature-independent region of fast fracture (catastrophic crack extension) existed up to 800° C, in which the failure mode was a mixture of transgranular and intergranular crack propagation. In this region, the alumina composite showed significantly higher fracture strength and toughness compared to polycrystalline alumina. Above 800° C, both materials (alumina and alumina composite) displayed a decreasing fracture strength due to the presence of subcritical or slow crack growth which occurred intergranularly. Flexural stress rupture evaluation in the temperature range 600 to 1200° C has identified the stress levels for time-dependent and time-independent failures.  相似文献   

8.
Yttria-ceria-doped tetragonal zirconia ((Y, Ce)-TZP)/alumina (Al2O3) composites were fabricated by hot isostatic pressing (HIP) at 1400–1600 °C and 147 MPa for 30 min in Ar gas using fine powders prepared by hydrolysis of ZrOCl2 solution. The mechanical properties of these ceramic composites were evaluated. The fracture toughness and bending strength of the composites consisting of 25 wt% Al2O3 and tetragonal zirconia with compositions 4 mol% YO1.5-4 mol% CeO2-ZrO2, 2.5 mol% YO1.5-4 mol% CeO2-ZrO2 and 2.5 mol% YO1.5-5.5 mol% CeO2-ZrO2 fabricated by HIP at 1400 °C were 6–7 MPa m1/2 and 1700–1800 MPa. Fracture toughness, strength and hardness of (Y, Ce)-TZP/Al2O3 composites were strongly dependent on HIP temperature. The fracture strength and hardness were increased, and grain growth of zirconia grains and phase transformation from the tetragonal to the monoclinic structure of (Y, Ce)-TZP during HIP in Ar at high temperature (1600 °C) were suppressed by the dispersion of Al2O3 into (Y, Ce)-TZP.  相似文献   

9.
The compaction behaviour of ultrafine yttria-doped zirconia powders (6–8 nm) without and with alumina additions (0 to 20 wt%) has been studied. From the pore size distribution and using isothermal and nonisothermal techniques, the sintering behaviour of zirconia compacts in the temperature range 800–1500 °C was studied. It was found that alumina additions (up to 10 wt%) enhanced the zirconia compacts' densification process and, above that alumina content, that process was retarded. Alumina additions did not affect the grain grown process in tetragonal zirconia samples. However, this was strongly hindered in the fully stabilized zirconia ones. The results were compared with those obtained in the same experimental conditions on a commercial zirconia powder.  相似文献   

10.
Hard porcelain ceramics find many applications because of their high hardness, high mechanical strength and moderate thermal-shock resistance. The addition of alumina as a filler to porcelain increases its strength at room temperature. In the present investigation, four-point-bend creep tests were carried out for porcelain-containing silica (SP-1) and alumina (AP-3) at 800, 900 and 1000°C. The creep data were analysed using a power-law creep, and the stress exponents were estimated. The activation energy for these two materials was found to be 45 kcal mol–1. The viscosity of the feldspar glassy phase was also determined from the creep tests. The test samples were analysed by scanning electron microscopy (SEM). The X-ray diffraction results (XRD) show that the amount of crystalline phase in the material increases after creep testing.  相似文献   

11.
Polycrystalline zirconia fibre was successfully synthesized by pyrolysis of preceramic fibre formed from an organozirconium compound. Dibutoxybis(2, 4-pentadionato)zirconium (BPZ) was polymerized at 150° C and 102 Pa, yielding a viscous polymeric product. The infrared absorption bands of the Zr-O bond changed from separate to coalesced bands after polymerization. The signals of the13C NMR spectrum of BPZ changed from sharp singlets to multiplets after polymerization. The molecular weight of the polymer was between 400 and 1000. The viscosity of polymer was 580 Pa sec at 30° C and a shear rate of 1.0 sec–1. The polymer viscosity decreased with increased temperature from 30 to 60° C. The precursor polymer pyrolysed at 400° C in air was amorphous to X-rays, and crystallized in a mixture of monoclinic and tetragonal phases at 450° C. Tetragonal zirconia was synthesized from the polymer including 4.3 mol % yttrium compound (2.2 mol % yttria) after heat treatment at 1200° C for 1 h. The precursor fibres were pyrolysed to yield fine-grained fibres of tetragonal zirconia at 1200° C for 1 h.  相似文献   

12.
Changes in the phase compositions and microstructures of magnesia-partially-stabilized zirconia (Mg-PSZ) were studied in water at 80–300 °C, 1 m HCl solutions at 80–140 °C and 1 m CH3COOH-CH3COONa buffer solutions at pH 3 and 80–140 °C for 10–40 days. The tetragonal to monoclinic phase transformation and the degradation of the fracture strength occurred in water above 200 °C. On the other hand, although no noticeable tetragonal to monoclinic phase transformation proceeded in 1 m HCl solutions and 1 m CH3COOH-CH3-COONa buffer solutions at pH 3 below 140 °C, the fracture strength of Mg-PSZ greatly degraded. The dissolution of Mg2+ ion was observed in water above 200 °C and in 1 m HCl solutions above 80 °C.  相似文献   

13.
A Vickers indentation method was used to determine the hardness of AlN and GaN, grown by the hydride vapor phase epitaxy technique, in the temperature range 20–1400 °C. At room temperature, the hardnesses of GaN and AlN are 10.2 and 17.7 GPa, respectively. The hardness of GaN and AlN shows a gradual decrease from RT and then a steep decrease from around 1000 °C. AlN is harder than GaN but softer than SiC. The steep decrease of the hardness means the beginning of macroscopic dislocation motion and plastic deformation. The mechanical strength of bulk single-crystal GaN is investigated at elevated temperatures directly by means of compressive deformation. The yield stress of GaN in the temperature range 900–1000 °C is around 100–200 MPa, i.e., similar to that of 6H-SiC and much higher than those of Si, Ge, GaAs.  相似文献   

14.
Yttria stabilized zirconia (8 mol%) composites were fabricated by tape casting with either alumina powder or alumina whiskers, and pressureless sintered. Sintering behaviour, ionic conductivity and mechanical strength were analysed. For all compositions analysed, increasing alumina content reduced the sintered density. For whisker-reinforced zirconia, the rigid whiskers prevented matrix densification along their axis. The ionic conductivity was measured by the complex impedance method from 500–1000 °C and the activation energy for ionic conduction calculated over that range. The ionic conductivity of the alumina-zirconia composites decreased with increasing alumina content as expected by the rule of mixtures. However, the ionic conductivity of the whisker-zirconia composites decreased more than expected possibly due to contamination from the whiskers. The strength of the whisker-zirconia composites was also found to be affected by the porosity. At 5 vol%, the average strength was measured at 39.9 kgf mm–2, which decreased to 24 kgf mm–2 at 20 vol%.  相似文献   

15.
Polycrystalline zirconia fibres, doped with 2–8 mol% of oxides of trivalent lanthanum, praseodymium, neodymium, samarium, gadolinium, and dysprosium (in decreasing cation size), were prepared by spinning of acetate-derived sols and baking the gel fibres thus obtained at 900–1300 °C for 1 h. The larger sized dopants lanthanum, praseodymium and neodymium (Group A) gave rise to tetragonal zirconia, with or without cubic zirconia, at 900 °C which converted partly or fully to monoclinic zirconia, in certain cases accompanied by a cubic zirconate phase at higher temperatures. The smaller sized dopants samarium, gadolinium and dysprosium (Group B) generated only tetragonal or cubic, or both polymorphs of zirconia, depending on the cation type, concentration and temperature. This stabilization of higher symmetry polymorphs with Group B dopants was associated with relatively large crystallite size (especially when calcined at 1300 °C). The maximum tensile strength values of usable fibres calcined at 1300 °C were found to decrease with increasing size in dopant dysprosium > gadolinium > samarium > neodymium, praseodymium, lanthanum=0). Although all the dopant cations were larger in size than Zr4+ (in the same oxygen coordination), the relative closeness in size of Group B cations with Zr4+ was considered to be the reason behind the obtained differences in properties.  相似文献   

16.
Electrochemical ZrO2 and Al2O3 coatings on SiC substrates   总被引:1,自引:0,他引:1  
SiC was electrochemically coated with ZrO2 and with Al2O3 from 0.1 m aqueous solutions of metal-nitrate-hydrates with ethanol added. Amorphous zirconia and alumina coatings were formed with current densities from 10 to 70 mA cm–2, and deposition durations of 1–60 min. The as-deposited coatings contained microcracks caused by drying shrinkage. Sintering of zirconia at 900 °C for 1 h and of alumina at 1200 °C for 2 h in air was accompanied by crystallization to a mixture of tetragonal and monoclinic phases in the former and to -alumina in the latter. The absence of intermediate phases between the coatings and the substrates and the good adherence of the sintered coatings indicate the high-temperature stability of these coatings.  相似文献   

17.
Creep rupture tests were performed in air on two polycrystalline oxide fibres (Al2O3, Al2O3-ZrO2) using both filament bundles and single filaments. Tests were performed at applied stresses ranging from 50–150 MPa over the temperature range 1150–1250 °C. Under these conditions, creep rates for the alumina-zirconia fibre ranged from 4.12 × 10–8–7.70 × 10–6s–1. At a given applied stress, at 1200°C, creep rates for the alumina fibre were 2–10 times greater than those of the alumina-zirconia fibre. Stress exponents for both fibres ranged from 1.2–2.8, while the apparent activation energy for creep of bundles of the alumina-zirconia fibre was determined to be 648 ± 100kJmol–1. For the alumina-zirconia fibre, the two test methods yielded similar steady-state creep rates, but the rupture times were generally found to be longer for bundles than for single filaments. The steady-state creep behaviour of these alumina-based fibres is consistent with an interface-reaction-controlled diffusion-controlling mechanism.  相似文献   

18.
Transformation toughened partially stabilized zirconia ceramics containing magnesia exhibit quite high fracture toughness (K lc 8 MPa m1/2) at temperatures of up to 500° C. The observed temperature dependences of the toughness and the fracture strength are consistent with that of the transformation behaviour. The high toughness of these materials results in a significant reduction in the sensitivity of the flexure strength to crack size increases. Exposure of these materials at 1000° C for prolonged periods results in flexure strength changes associated with the generation of the monoclinic phase by tetragonal precipitate destabilization and eutectoid decomposition. However, when exposed at 500° C, neither the phase contents nor the flexure strength are altered for exposures of up to 1000 h.  相似文献   

19.
Electrical conductivity of tetragonal stabilized zirconia   总被引:3,自引:0,他引:3  
The electrical conductivity change on annealing for tetragonal stabilized zirconia (TZP) was studied with the help of a.c. impedance dispersion analysis techniques. The dependences of the conductivity on annealing time at 1000 ° C and on temperature cycling between room temperature and 1000 ° C were investigated. A decrease in conductivity of about 30% at 1000 ° C of TZP with 3 mol% Y2O3 was observed during the first 200 h of annealing at 1000 ° C, and no change was observed during further annealing. A similar result was observed for TZP with 2.9 mol% Sc2O3. For TZP with 3.0mol% Yb2O3, the conductivity decreased gradually during an annealing time of over 2000 h. The impedance dispersion analysis at lower temperature suggested that the decrease in electrical conductivity by annealing at 1000 ° C could be attributed to the increases of both grain boundary and intragrain resistance. No monoclinic phase was observed for the samples annealed at 1000 ° C for 2000 h. On the other hand, a trace of a monoclinic phase was found for TZP with 3mol% Y2O3 after the 50th temperature cycling, but no significant decrease in conductivity was observed with the cycling.  相似文献   

20.
For zirconia ceramics stabilized with 9 mol.% CeO 2, we study specific features of the processes of deformation and formation of the zones of transformation of the tetragonal phase into the monoclinic phase under the action of mechanical stresses. It is shown that, at room temperature, this transition occurs explosively (autocatalytically) and is accompanied by the formation of large zones of the -phase in the form of strips on the surface of tension of the specimen and the appearance of a nonlinear sawtooth section in the stress–strain diagram. As the testing temperature increases, the degree of autocatalyticity decreases together with the degree of nonlinearity and the diagrams lose their sawtooth character. At the same time, the strength of the material becomes almost four times higher at ~ 200°C and then decreases to the initial level at 400°C. It is assumed that this Type of mechanical behavior can be explained by changes in the mechanisms of hardening of ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号