首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
《铸造技术》2017,(3):513-516
采用Gleeble-1500热模拟试验机,在变形温度300~500℃、应变速率0.000 1~0.01 s~(-1)的变形条件下,对SiC颗粒增强7090铝基复合材料进行等温恒应变速率热压缩试验,对热变形行为及微观组织进行研究。结果表明:流变应力的大小与位错在SiC颗粒处的堆积程度有关;随着温度的降低或应变速率的升高,堆积程度越大,使得流变应力增大;当温度为300℃、应变速率为0.01 s~(-1)时,峰值应力达到最大为153.6 MPa;复合材料热压缩后SiC颗粒分布更加均匀;变形温度升高或应变速率降低都会使再结晶晶粒增大。  相似文献   

2.
用Gleeble-3500热模拟试验机对退火态纯钛试样,在变形温度298~723 K、应变速率10~(-4)~10~1s~(-1)下进行热压缩试验,研究变形温度和应变速率对其热变形行为及组织演变的影响。结果表明:纯钛的压缩行为与变形温度和应变速率存在相关性;当应变速率一定时,流变应力随变形温度的升高而减小;当变形温度一定时,流变应力随应变速率的增大而增大。显微组织观察结果显示:在低温或高应变速率下变形时,形变组织主要为大尺寸等轴晶和孪晶,随着温度的升高或应变速率的降低,再结晶晶粒逐渐增多,孪晶数量减少,直至消失。  相似文献   

3.
研究了2vol%Mg2B2O5w/6061铝合金复合材料在热变形过程中,不同变形温度、应变速率下流变应力的变化,并通过计算机拟合建立了热压缩变形本构方程。结果表明,压缩变形过程中复合材料的流变应力随着变形温度的升高而降低,随着应变速率的增大而升高。当应变速率在0.01~1.00/s之间时,材料呈现出动态回复特征。复合材料在热变形过程中的应变速率和流变应力关系符合双曲正弦函数关系。  相似文献   

4.
TiC/AZ91D镁基复合材料高温压缩变形行为   总被引:7,自引:0,他引:7  
利用自发渗透原位合成法制备了不同体积分数的TiC增强AZ91D镁基复合材料,研究了不同压缩应变速率以及不同变形温度下复合材料的热变形行为,计算分析了不同温度下应变速率敏感指数(m)和表观激活能(Q)与TiC含量的关系.结果表明:TiC/AZ91D复合材料压缩流变应力随TiC含量的增加而升高;TiC含量相同时,流变应力随温度升高或初始应变速率减小而降低.m值随变形温度升高而增大;变形温度以及压缩应变速率相同时,m值随TiC含量升高而增大.Q值依赖于温度、应变速率和TiC含量及其分布,不同条件下其高温变形机制有所差异.  相似文献   

5.
7150铝合金高温热压缩变形流变应力行为   总被引:7,自引:2,他引:5  
在Gleeble-1500热模拟机上对7150铝合金进行高温热压缩实验,研究该合金在变形温度为300~450 ℃和应变速率为0.01~10 s~(-1) 条件下的流变应力行为.结果表明:流变应力在变形初期随着应变的增加而增大,出现峰值后逐渐趋于平稳;峰值应力随着温度的升高而减小,随着应变速率的增大而增大;可用包含Zener-Hollomon参数的Arrhenius双曲正弦关系来描述合金的热流变行为,其变形激活能为226.698 8 kJ/mol;随着温度的升高和应变速率的降低,合金中拉长的晶粒发生粗化,亚晶尺寸增大,再结晶晶粒在晶界交叉处出现并且晶粒数量逐渐增加;合金热压缩变形的主要软化机制由动态回复逐步转变为动态再结晶.  相似文献   

6.
在单向压缩热模拟试验机上对AZ31-1Sm合金在变形温度为300~450℃、应变速率为0.01~1 s-1条件下的热变形行为和微观组织进行研究。结果表明:AZ31-1Sm镁合金在热压缩变形时,流变应力随着应变速率的增大和变形温度的降低而增大;该合金的热压缩流变应力行为可用双曲正弦形式的本构方程来描述,在本实验条件下,AZ31-1Sm镁合金热热变形激活能Q为160.8 k J/mol。AZ31-1Sm易发生动态再结晶,在高变形温度和低应变速率条件下动态再结晶趋势明显,动态再结晶晶粒尺寸随着变形温度的增加和应变速率的降低而增大。  相似文献   

7.
在单向压缩热模拟试验机上对AZ31-1Sm合金在变形温度为300~450℃、应变速率为0.01~1 s-1条件下的热变形行为和微观组织进行研究。结果表明:AZ31-1Sm镁合金在热压缩变形时,流变应力随着应变速率的增大和变形温度的降低而增大;该合金的热压缩流变应力行为可用双曲正弦形式的本构方程来描述,在本实验条件下,AZ31-1Sm镁合金热热变形激活能Q为160.8 k J/mol。AZ31-1Sm易发生动态再结晶,在高变形温度和低应变速率条件下动态再结晶趋势明显,动态再结晶晶粒尺寸随着变形温度的增加和应变速率的降低而增大。  相似文献   

8.
采用Gleeble?1500热模拟实验机对Ag-SnO2(10%,质量分数)复合材料进行高温压缩变形实验,分析该材料在变形温度为750~900℃、应变速率为0.01~1 s?1条件下的流变应力变化规律;采用透射电镜(TEM)观察Ag-SnO2(10%)复合材料热压缩变形后的显微组织。采用双曲正弦确定了该材料的变形激活能,建立了以Zener-Hollomon参数描述的高温塑性变形本构模型,并验证了本构模型的准确性。结果表明:变形温度和应变速率均对流变应力有显著影响,流变应力随变形温度升高而减小,随应变速率的增加而增大。动态再结晶和孪晶共同作用是Ag-SnO2复合材料热压缩变形的主要变形机制,随应变速率增加,孪晶数量增多,并形成了二次孪晶。  相似文献   

9.
采用Gleeble-1500热模拟试验机对30%SiCP/2024A1复合材料在温度为623~773 K、应变速率为0.01~10 s-1变形条件下热变形流变行为进行了研究。由试验得出变形过程中的真应力真应变曲线,建立热变形本构方程和功率耗散图。结果表明,复合材料的流变应力随温度的升高而降低,随应变速率的增大而升高,说明该复合材料是一个正应变速率敏感的材料。该复合材料热压缩变形时的流变应力行为可采用Zener-Hollomon参数的双曲正弦形式来描述,热变形激活能Q为571.377 kJ/mol。高温高应变速率条件下的功率耗散系数大,该变形区发生了组织转变。  相似文献   

10.
通过对铸态Mg-3Sn-1Mn-1La合金在变形温度为200~450℃、应变速率为0.001~1.0s~(-1)条件下进行热压缩实验,研究了其热变形行为和微观组织变化规律。结果表明:随着变形温度的降低和应变速率的升高,流变应力明显增大而再结晶晶粒尺寸减小。在变形温度较低的条件下,连续动态再结晶是主要的再结晶机制。然而,当变形温度升高时,非连续动态再结晶机制占主导。分析和修正了摩擦和变形热对流变应力的影响。结果表明,与摩擦相比变形热对流变应力的影响更加明显,且随着应变速率的增加和变形温度的降低,变形热对流变应力的影响更加明显。在实验数据的基础上建立了应变修正的本构方程。通过对实验值与预测值的对比发现,所建立的本构方程能够准确地描述实验合金的热变形行为。  相似文献   

11.
《铸造》2017,(2)
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,对Cu-Cr-Zr合金在变形温度为600~800℃、应变速率为0.01~5 s~(-1)和总压缩应变量约50%条件下的热变形行为进行了研究。利用光学显微镜观察Cu-Cr-Zr合金在不同变形温度、不同应变速率下的显微组织,分析其组织演变规律。结果表明:应变速率和变形温度的变化强烈地影响合金流变应力的大小;Cu-Cr-Zr合金在热变形过程中发生了动态再结晶,且流变应力随变形温度升高而降低,随应变速率提高而增大;在应变温度为800℃时,合金热压缩变形流变应力出现了明显的峰值应力,表现为连续动态再结晶特征。从流变应力、应变速率和温度的相关性,得出了该合金热压缩变形时的热变形激活能Q和流变应力方程。  相似文献   

12.
采用真空热压烧结法制备了纳米Al2O3弥散强化铜为基体,W颗粒为增强相的W(50)/Cu-Al2O3新型复合材料。在Gleeble-1500D热模拟机上对真空热压烧结W(50)/Cu-Al2 O3复合材料进行等温热压缩实验,研究了在变形温度为650~950℃;变形速率为0.01~5 s-1;最大真应变为0.7条件下的流变应力行为。结果表明:在实验条件下,复合材料W(50)/Cu-Al2O3存在明显的动态再结晶特征,即变形初期,流变应力随着应变量的增大而迅速增大,达到峰值之后流变应力逐渐趋于平稳,不随应变的增加而明显变化。变形温度和变形速率对流变应力影响显著,随着温度的升高和应变速率的减小,峰值应力逐渐减小,并且在晶界交叉处出现再结晶晶粒,并逐渐增多。复合材料的主要软化机制为动态再结晶。建立了复合材料高温变形时的流变应力本构方程,并确定了热变形激活能Q为176.05 kJ/mol。  相似文献   

13.
采用Gleeble3500热模拟试验机对Ti2AlC/TiAl(Nb)复合材料进行高温压缩实验,实验温度范围为1000℃~1150℃,应变速率范围为10-3s-1~10-1s-1,工程压缩应变为50%,得到复合材料高温压缩真应力-真应变曲线。结果表明,Ti2AlC/TiAl(Nb)复合材料的高温变形流变应力对温度及应变速率敏感;流变应力随应变速率的增大而增大,随温度的升高而减小,可用位错-颗粒交互作用模型解释复合材料的应力-应变行为;Zenner-Hollomon参数的指数函数能够较好的描述该合金高温变形时的流变应力行为。建立的本构方程为ε=9.31×1011[sinh(0.0044σ)]2.52exp[-366.2/(RT)],其变形激活能为366.2kJ/mol。  相似文献   

14.
采用Gleeble-1500D热模拟试验机,对35%SiCp/2024A1复合材料在温度350~500°C、应变速率0.01~10s-1的条件下进行热压缩试验,研究该复合材料的热变形行为与热加工特征,建立热变形本构方程和加工图。结果表明,35%SiCp/2024A1复合材料的流变应力随着温度的升高而降低,随着应变速率的增大而升高,说明该复合材料是正应变速率敏感材料,其热压缩变形时的流变应力可采用Zener-Hollomon参数的双曲正弦形式来描述;在本实验条件下平均热变形激活能为225.4 kJ/mol。为了证实其潜在的可加工性,对加工图中的稳定区和失稳区进行标识,并通过微观组织得到验证。综合考虑热加工图和显微组织,得到变形温度500°C、应变速率0.1~1 s-1是复合材料适宜的热变形条件。  相似文献   

15.
在Gleeble-3500热模拟机上对半固态7050铝合金进行了高温热压缩试验,研究了该合金在变形温度为420~465℃、应变速率为0.001~0.100s-1条件下的流变应力行为以及变形过程中的显微组织。结果表明,流变应力在变形初期随着应变的增大迅速增大,出现峰值应力后逐渐平稳,流变应力随着应变速率的增大而增大,随着变形温度的升高而下降;流变应力可以用双曲线正弦形式的关系来描述,通过线性拟合计算出该材料的形变激活能等参数,获得流变应力的本构方程。随着变形温度升高和应变速率降低,合金中拉长的晶粒变大,合金热压缩变形的主要软化机制为动态再结晶。  相似文献   

16.
采用热压缩试验研究了SiC颗粒增强镁基复合材料在应变速率为0.1~10 s-1、变形温度为803~843 K时的热成形性能,并在实验数据分析的基础上根据真应力-真应变曲线,计算出复合材料的本构方程及变形激活能Q。结果表明,复合材料在高温下的流变应力较低,峰值应力与变形温度、应变速率之间的关系在低应力区符合指数关系。该复合材料的激活能随着应变速率的增大而增大。  相似文献   

17.
为了研究GH696合金的热变形行为,在880~1120℃、0.01~10 s~(-1)条件下对其进行一系列等温压缩试验,所有试样的变形量为50%。计算各变形条件下的应变速率敏感性指数(m)及应变硬化指数(n),并分析加工参数对m和n值的影响。结果表明,流变应力随着应变速率的增大及变形温度的降低而增大。m值随变形温度的升高而增大,随应变速率的增大而减小,而n值则随着变形温度的升高而减小。此外,建立了GH696合金热变形过程中的流变应力模型,由模型计算得到的流变应力与实验结果吻合较好。  相似文献   

18.
采用Thermecmastor-Z热模拟试验机在变形温度为200~520℃、应变速率为2~60 s-1条件下对AZ31B镁合金厚板进行热压缩变形试验,压缩变形量为60%。结合变形后的微观组织以及热压缩真应力-真应变曲线,分析应变速率和变形温度等工艺参数对其微观组织演变的影响。结果表明:当变形温度高于320℃时,AZ31B镁合金的真应力-真应变曲线呈现典型的动态再结晶特性。当应变速率一定时,流变应力随温度升高而降低;当变形温度一定时,流变应力在高温低应变速率(低于15 s-1)下随应变速率增大而增大。变形后的微观组织显示,压缩变形过程中发生了明显的动态再结晶,动态再结晶体积分数随应变速率的增加而增大。另外,变形组织的均匀性受变形温度的影响十分显著。在热压缩实验的基础上,在温度为300~330℃时对板材进行单道次大压下量的热轧,获得的板材具有均匀细小的晶粒及优异的力学性能。  相似文献   

19.
在Gleeble 1500D热模拟试验机上,采用高温等温压缩试验对Cu-Ni-Si-P-Cr合金在应变速率为0.01~5 s 1、变形温度为600~800℃条件下的流变应力行为进行研究,利用光学显微镜分析合金在热压缩过程中的组织演变及动态再结晶机制。结果表明:Cu-Ni-Si-P-Cr合金在热变形过程中发生了动态再结晶,且根据变形温度的不同,真应力—真应变曲线的特征有所不同。流变应力随变形温度升高而降低,随应变速率提高而增大。从流变应力、应变速率和温度的相关性得出该合金热压缩变形时的热变形激活能Q和本构方程。  相似文献   

20.
在变形温度700~860 ℃、应变速率0.001~1 s-1下,对TB6合金进行热压缩变形,以研究TB6合金的热压缩流变应力行为.研究温度、变形量、应变速率等因素对TB6热变形流变应力的影响,建立了TB6合金热变形流变应力的本构模型方程.结果表明:合金在热压缩过程中,流变应力随着应变的增大而增加,达到峰值应力后逐渐趋于平稳;应力峰值随着应变速率的增大而增大,随着温度的升高而呈减小趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号