首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
利用Gleeble-3500D热模拟试验机,在变形温度为870~1170℃,应变速率为0.05~3 s-1,最大变形量为60%的条件下,对LZ50钢进行等温恒应变速率的热压缩实验,研究应变速率和变形温度对流变应力的影响,建立LZ50钢热变形时的本构方程和热加工图。结果表明:LZ50钢的流变应力随变形温度的升高和应变速率的降低而减小,其动态再结晶型流变应力曲线可表述为加工硬化、过渡、软化和稳态流变4个阶段;热变形激活能为304.265 k J/mol,根据双曲正弦方程建立包含Z参数的峰值流变应力本构方程;将LZ50钢的热加工图与快锻液压机的技术参数及通过Deform模拟获得的优化工艺参数相结合可得,当压下量为15%~20%,在开始锻造的高温阶段1050~1150℃,可采用较高的应变速率0.5~3 s-1,随着锻件温度降低至870~1050℃,应适当降低应变速率至0.5~1.5 s-1以避开失稳区,整个变形过程的微观组织演变机制为动态回复。  相似文献   

2.
在Gleeble-1500D热模拟机上对Zn-Cu-Ti合金进行等温压缩试验,研究了变形温度为150~240℃,应变速率为0.01~10 s-1,变形量为50%时锌合金的热变形行为。采用光学显微镜观察热压缩过程中微观组织的变化。结果表明,锌合金在热压缩过程中发生了动态再结晶。锌合金的峰值流变应力随变形温度的升高和变形速率的下降而降低,该合金的流变应力模型可用Arrhenius方程来描述。试验中发现,该合金存在两个热加工安全区,即温度为150~210℃、变形速率为0.67~10 s-1区域和温度为215~240℃、变形速率为0.01~0.98 s-1区域。最佳热加工工艺参数:变形温度为235~240℃,变形速率为0.09~0.11 s-1,功率耗散效率为35%。  相似文献   

3.
采用Gleeble-3500热模拟试验机对6061铝合金进行等温热压缩试验,研究变形温度为300~450℃、应变速率为0.01~10s-1、压缩量为60%条件下合金的热变形特性,分析其高温流变应力行为,依据动态材料模型建立热加工图并结合热变形组织分析6061铝合金的热变形机制。结果表明,6061铝合金流变应力随变形温度的升高和应变速率的降低而下降,其高温软化机制以动态回复为主;合金在高应变速率下普遍存在流变失稳,最佳热加工区间变形温度为430~450℃,应变速率为0.01~0.05 s~(-1),该工艺范围内合金出现了部分动态再结晶组织。  相似文献   

4.
利用Gleeble-1500D热模拟试验机对Cu-0.8Mg合金进行热变形试验,变形温度为500~850℃、应变速率为0.001~10 s-1,研究不同试验条件下合金流变应力的变化规律,分析合金的流变应力、应变速率和变形温度之间的关系,对合金的热加工图进行研究。结果表明:合金在热变形过程中,其流变应力曲线表现出典型的加工硬化、动态回复和再结晶特征,随着变形温度的升高和应变速率的降低,其流变应力和峰值应力也随之降低;合金热变形过程中的激活能为177.88 k J/mol,构建了合金的本构方程;合金在热变形过程中的最优加工参数为:变形温度为700~800℃、应变速率为0.01~0.1 s-1。  相似文献   

5.
采用Gleeble-1500D热模拟试验机,在温度为650~950℃、应变速率为0.01~5 s-1、总应变量为0.7的条件下,对25%W-Cu和50%W-Cu(质量分数)复合材料的热变形行为及其热加工图进行研究和分析。结果表明:此两种复合材料的高温流动应力—应变曲线主要以动态再结晶为特征,峰值应力随变形温度的降低或应变速率的升高而增大;在真应力—应变曲线基础上建立的W-Cu复合材料高温变形本构模型较好地表征了其高温流变特性;同时,利用50%W-Cu复合材料DMM加工图分析了其变形机制和失稳机制,确定其热加工工艺参数应优先选择变形温度为650~700℃、应变速率为1~5 s-1,或者变形温度为850~950℃、应变速率为0.01~0.1 s-1。  相似文献   

6.
研究了镍基高温合金GH4700变形温度和应变速率对热变形行为的影响,建立了该合金的热变形本构方程和热加工图。结果表明:在变形温度1120~1210℃、应变速率0.01~20 s-1条件下,该合金的热变形流变曲线呈现出典型的动态再结晶型特征,存在稳态的流变应力,且随着变形温度的升高和应变速率降低,动态再结晶过程更充分;GH4700合金的热变形激活能为326.3165 kJ/mol;该合金在温度为1180~1210℃,应变速率为10~20 s-1的热压缩变形条件下,能量耗散率η值较高,大于0.30,显微组织发生完全动态再结晶,获得的组织晶粒细小且分布均匀。  相似文献   

7.
采用Gleeble-3500热模拟试验机,在变形温度300℃~420℃、应变速率0.000 5 s-1~0.5 s-1的变形条件下,对铸态AZ80+0.4Ce镁合金进行热压缩试验。试验研究了该合金的高温流动应力变化规律,采用金相显微镜分析了温度、应变速率对微观组织的影响。结果表明:铸态AZ80+0.4Ce镁合金的高温流动应力-应变曲线主要以动态再结晶软化机制为特征,增加变形温度和降低应变速率都会降低材料的流动应力;热压缩温度越高,动态再结晶进行越充分,应变速率越大,动态再结晶晶粒越细。  相似文献   

8.
利用Gleeble-1500D热模拟试验机,在温度650~950℃、应变速率0.01~5s-1、总应变量0.7的条件下,对W-75%Cu复合材料高温塑性变形行为及其热加工图进行研究和分析。结果表明:W-75%Cu复合材料高温流动应力-应变曲线主要以动态再结晶为特征,峰值应力随变形温度的降低或应变速率的升高而增加;在真应力-应变曲线基础上,建立的W-75%Cu复合材料高温变形本构模型较好地表征了其高温流变特性;同时,利用W-75%Cu复合材料DMM加工图分析其变形机制和失稳机制,可确定其热加工工艺参数应优先选择变形温度800~950℃、应变速率0.01~0.1s-1。  相似文献   

9.
利用Gleeble-1500热力模拟试验机,在温度为650~950℃、应变速率为0.01~5 s-1、总应变量0.7的条件下,对W-50%Cu复合材料高温塑性变形过程中的动态再结晶行为及其热加工图进行了研究和分析。试验结果表明:W-50%Cu复合材料高温流动应力-应变曲线主要以动态回复和动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;在真应力-应变曲线基础上,建立的W-50%Cu复合材料高温变形本构模型较好地表征了其高温流变特性;同时,利用W-50%Cu复合材料DMM加工图分析了其变形机制和失稳机制,可确定其热加工工艺优先选择变形温度650~700℃、应变速率1~5 s-1或变形温度850~950℃、应变速率0.01~0.1 s-1。  相似文献   

10.
利用Gleeble-1500D热模拟试验机,对Cu-0.2%Zr-0.15%Y合金进行高温热压缩热模拟试验,对合金在应变速率为0.001~1 s-1、变形温度为550~900℃时,试验过程中的流变应力变化、动态再结晶机制及其微观组织变化进行了研究。结果表明,试验合金流变应力受应变温度和变形速率的影响极大,动态再结晶的显微组织对温度的变化反应敏感,当变形温度降低或者应变速率升高时,其流变应力曲线随之上升。通过流变应力、应变速率和变形温度之间的联系,解出了该合金在热压缩变形时的应力指数(n)、应力参数(α)、结构因子(A)、热变形激活能(Q)以及其本构方程。  相似文献   

11.
在变形温度为1050~1180℃、应变速率为0.1~10s-1、最大真应变为0.7的条件下,采用Gleeble-3500热模拟试验机研究GH4199合金的热压缩变形行为,得到该合金的热变形激活能及热变形方程式,建立合金的热加工图,并通过组织观察对其热加工图进行解释。结果表明:在实验条件下,GH4199合金均表现出动态再结晶特征;变形温度和应变速率对合金流变应力及相应峰值应变大小的影响显著,流变应力及峰值应变均随着变形温度的降低和应变速率的增加而增大;在真应变为0.1~0.7时合金的热加工图相似,随着变形温度的升高及应变速率的降低,能量消耗效率逐渐升高;在应变速率为0.01s-1时,能量消耗效率达到峰值,约为41%。  相似文献   

12.
利用Gleeble-1500D热模拟试验机,在应变速率为0.01~10 s-1,变形温度为1000~1150℃条件下对铸态27Si Mn钢进行等温恒应变速率压缩试验。通过真应力-真应变曲线,分析了应变速率和变形温度对流变应力的影响规律,建立了铸态27Si Mn钢热变形时的本构方程和热加工图。结果表明,铸态27Si Mn钢高温变形时的峰值应力随应变速率的增大和变形温度的降低而升高;变形激活能为Q=369.0 k J/mol;热变形失稳区域集中在变形温度1000~1060℃、应变速率为1~10 s-1的区域内;最优热加工条件为变形温度1130~1150℃,应变速率4~10 s-1的区域,此时表现为典型的动态再结晶,对应的峰值效率达到35%。  相似文献   

13.
宁静  王敖  苏杰  程兴旺 《锻压技术》2022,(12):234-239
采用Gleeble-3800热模拟试验机研究了含有W、Mo等多种碳化物形成元素的新型中合金超高强度钢的热变形行为,变形温度为800~1200℃,应变速率为0.01~10 s^(-1),最大应变量为0.7。热模拟试验得到了试验钢的高温流变应力曲线,其变形抗力随变形温度的降低和应变速率的提高而增加。在变形温度1000℃以上进行热压缩时,试验钢可发生动态再结晶;变形温度的升高会促进晶粒粗化及二次再结晶的发生,而应变速率的提升有利于促进再结晶晶粒的细化和均匀化。根据试验钢的高温流变应力曲线,计算出试验钢的热加工本构方程,并建立了真应变为0.4的热加工图。结合微观组织演变的分析结果,得出试验钢的最佳热加工区域应为:变形温度为1000~1100℃、应变速率为1~10 s^(-1)。  相似文献   

14.
采用Thermecmastor-Z热模拟试验机在变形温度为200~520℃、应变速率为2~60 s-1条件下对AZ31B镁合金厚板进行热压缩变形试验,压缩变形量为60%。结合变形后的微观组织以及热压缩真应力-真应变曲线,分析应变速率和变形温度等工艺参数对其微观组织演变的影响。结果表明:当变形温度高于320℃时,AZ31B镁合金的真应力-真应变曲线呈现典型的动态再结晶特性。当应变速率一定时,流变应力随温度升高而降低;当变形温度一定时,流变应力在高温低应变速率(低于15 s-1)下随应变速率增大而增大。变形后的微观组织显示,压缩变形过程中发生了明显的动态再结晶,动态再结晶体积分数随应变速率的增加而增大。另外,变形组织的均匀性受变形温度的影响十分显著。在热压缩实验的基础上,在温度为300~330℃时对板材进行单道次大压下量的热轧,获得的板材具有均匀细小的晶粒及优异的力学性能。  相似文献   

15.
《塑性工程学报》2016,(6):137-142
利用Gleeble-3800热模拟试验机研究了一种新型二次硬化超高强度钢M54在850~1 200℃、应变速率为10-2~10s-1条件下的热压缩变形行为,测得了钢的高温流变曲线,并观察变形后的显微组织。实验结果表明,该钢种的流变应力和峰值应变随着变形温度的升高和应变速率的降低而减小,在真应变为0.9,应变速率为10-2~10s-1的条件下,随着变形速率的提高,其发生完全动态再结晶的温度也随之提高。通过计算可知该钢的热变形激活能为489.712kJ·mol~(-1),并建立了试验钢的热变形方程,并绘制了其热加工图,结合高温变形后的显微组织和热加工图,确定了最优热变形工艺参数为变形温度范围1 050~1 100℃,应变速率为0.1~1s~(-1)。  相似文献   

16.
采用Gleeble-1500D热模拟试验机,研究了Cu-0.8Cr-0.3Zr合金在变形温度为650~950℃、应变速率为0.001~10 s-1、总压缩应变量60%条件下的流变行为,对热变形过程中的组织演变和动态再结晶机制进行了分析,同时分析了该合金的热加工图。结果表明,变形温度越高,应变速率越小,合金越容易发生动态再结晶,且对应的峰值应力也越小。利用逐步回归的方法建立该合金的流变应力方程。绘制了Cu-Cr-Zr合金的热加工图,确定了其热加工时的安全区与失稳区,得出了该合金在实验参数范围内热变形过程的最佳工艺参数:温度范围为850~900℃,应变速率范围为0.1~1 s-1。  相似文献   

17.
在热模拟试验机上对铸态组织的阻燃钛合金(Ti-35V-15Cr-Si-C)进行了等温恒应变速率热压缩试验,温度范围为900~1200 ℃,应变速率范围为10-3~1 s-1,测试了其真应力-真应变曲线并对曲线上的应力σ突降进行了解释。基于动态材料模型建立了合金的热加工图,结合微观组织观察,确定了3个不同区域的高温变形机制:温度900~1030 ℃、应变速率小于0.1 s-1时,变形机制为动态回复和连续动态再结晶;温度大于1030 ℃、应变速率小于0.1 s-1时,功率耗散效率η出现峰值,除了动态回复和连续动态再结晶,还出现碳化物溶解现象;高应变速率(大致在0.01~1 s-1之间)区,是合金的变形失稳区域,较低温度时失稳机制为局部流动,高温失稳与碳化物溶解有关,=1 s-1时组织演变特征是项链状动态再结晶  相似文献   

18.
为了探究0.30C-Cr-W渗氮轴承钢的最佳动态再结晶条件和热变形机理,利用Gleeble3800热模拟试验机对试验钢进行了等温热压缩模拟试验,试验变形温度为750~1050 ℃,应变速率0.01~10 s-1,变形量60%。结果表明,峰值应力随变形温度的降低和应变速率的升高而增大,在应变速率为0.01∼0.1 s-1,变形温度为950~1050 ℃时,发生明显动态再结晶;具有双曲正弦函数型的本构方程能较好地描述0.30C-Cr-W渗氮轴承钢的流变行为;0.30C-Cr-W渗氮轴承钢的形变激活能为442.022 kJ/mol。基于动态材料模型和流变应力数据建立了热加工图。通过热加工图及微观组织的观察确定了变形温度950∼1050 ℃,应变速率0.01∼0.15 s-1为最佳热变形条件;变形温度750∼950 ℃,应变速率1.2∼10 s-1为流变失稳区。  相似文献   

19.
在单向压缩热模拟试验机上对AZ31-1Sm合金在变形温度为300~450℃、应变速率为0.01~1 s-1条件下的热变形行为和微观组织进行研究。结果表明:AZ31-1Sm镁合金在热压缩变形时,流变应力随着应变速率的增大和变形温度的降低而增大;该合金的热压缩流变应力行为可用双曲正弦形式的本构方程来描述,在本实验条件下,AZ31-1Sm镁合金热热变形激活能Q为160.8 k J/mol。AZ31-1Sm易发生动态再结晶,在高变形温度和低应变速率条件下动态再结晶趋势明显,动态再结晶晶粒尺寸随着变形温度的增加和应变速率的降低而增大。  相似文献   

20.
对Cu-Cr-Zr-Ag合金在Gleeble-1500D热模拟试验机上进行热压缩实验,对合金在应变速率为0.001~10 s-1、变形温度为650~950℃的高温变形过程中的流变应力行为、热变形过程中的组织演变和动态再结晶机制进行了研究。结果表明,流变应力随变形温度升高而减小,随应变速率提高而增大。Cu-Cr-Zr-Ag合金在热变形过程中的动态再结晶机制受变形温度和应变速率控制。当温度达到950℃,应变速率为0.001 s-1时,Cu-Cr-Zr-Ag合金发生完全的动态再结晶。该合金高温热压缩变形时的热变形激活能Q为343.23 k J/mol,同时利用逐步回归法建立了该合金的流变应力方程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号