首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silicon carbide fibre reinforced glass-ceramic matrix composites have been investigated as a structural material for use in oxidizing environments to temperatures of 1000° C or greater. In particular, the composite system consisting of SiC yarn reinforced lithium aluminosilicate (LAS) glass-ceramic, containing ZrO2 as the nucleation catalyst, has been found to be reproducibly fabricated into composites that exhibit exceptional mechanical and thermal properties to temperatures of approximately 1000° C. Bend strengths of over 700 MPa and fracture toughness values of greater than 17 MN m–3/2 from room temperature to 1000° C have been achieved for unidirectionally reinforced composites of 50 vol% SiC fibre loading. High temperature creep rates of 10–5 h–1 at a temperature of 1000° C and stress of 350 MPa have been measured. The exceptional toughness of this ceramic composite material is evident in its impact strength, which, as measured by the notched Charpy method, has been found to be over 50 times greater than hot-pressed Si3N4.  相似文献   

2.
Copper-matrix SiC whisker composites containing 33–54 vol % SiC whiskers and with < 5 vol % porosity were fabricated by hot pressing SiC whiskers that had been coated with copper by electroless plating followed by electroplating. The highest Brinell hardness of 260 was attained at 50 vol % SiC whiskers. The lowest coefficient of thermal expansion (CTE) of 9.6 × 10–6°C–1 (at 25–150°C) was attained at 54 vol % SiC whiskers. The composites exhibited lower porosity, higher hardness, higher compressive yield strength, lower CTE, lower electrical resistivity and higher thermal conductivity than the corresponding composites made by hot pressing mixtures of copper powder and bare SiC whiskers.  相似文献   

3.
An investigation of the structure and properties of a calcium aluminosilicate glass-ceramic reinforced with Nicalon fibres is described. Microstructural analysis of the interface showed that during manufacture of the composite a reaction zone rich in carbon formed between the Nicalon fibre and the anorthite matrix. Tensile strengths were approximately 330 MPa for unidirectional material and around 210 MPa for a (0°/90°)3s. composite, little more than half that predicted by the mixtures rule. Flexural strengths were, however, higher than tensile strengths, by a factor 1.5–2.5 depending on lay-up. Studies carried out on specimens heat treated in air for 24 h at temperatures in the range 600–1200 °C showed a progressive change of interface microstructure in the outermost regions of the specimens due to oxidation of the carbon-rich layer; at 1000 °C and above the carbon had disappeared to leave voids and silica-rich bridges between fibre and matrix. These changes affected the strength of the interfacial bond, as measured by an micro-indentation technique, and also the degree of fibre pull-out produced in mechanical tests. Thus as-received material exhibited appreciable pull-out whilst heattreated samples were characterized by brittle behaviour in the outer (oxidized) regions. Nevertheless, the composites whilst in the unstressed condition appeared to survive these short-term exposures to oxidizing environments. An interfacial shear stress of around 5 MPa was calculated by applying the Aveston, Cooper and Kelly theory to crack spacings measured in our room-temperature deformation experiments, a value which agreed well with the 3–5 MPa obtained by the micro-indentation method.  相似文献   

4.
Effect of thermal cycling on whisker-reinforced dental resin composites   总被引:3,自引:0,他引:3  
The mechanical properties of dental resin composites need to be improved in order to extend their use to high stress-bearing applications such as crown and bridge restorations. Recent studies used single crystal ceramic whiskers to reinforce dental composites. The aim of this study was to investigate the effects of thermal cycling on whisker-reinforced composites. It was hypothesized that the whisker composites would not show a reduction in mechanical properties or the breakdown of whisker–resin interface after thermal cycling. Silicon carbide whiskers were mixed with silica particles, thermally fused, then silanized and incorporated into resin to make flexural specimens. The filler mass fraction ranged from 0% to 70%. The specimens were thermal cycled in 5 °C and 60 °C water baths, and then fractured in three-point bending to measure strength. Nano-indentation was used to measure modulus and hardness. No significant loss in composite strength, modulus and hardness was found after 105 thermal cycles (family confidence coefficient=0.95; Tukey's multiple comparison test). The strength of whisker composite increased with filler level up to 60%, then plateaued when filler level was further increased to 70%; the modulus and hardness increased monotonically with filler level. The strength and modulus of whisker composite at 70% filler level were significantly higher than the non-whisker controls both before and after thermal cycling. SEM revealed no separation at the whisker–matrix interfaces, and observed resin remnants on the pulled-out whiskers, indicating strong whisker–resin bonding even after 105 thermal cycles. In conclusion, novel dental resin composites containing silica-fused whiskers possessed superior strength and modulus compared to non-whisker composites both before and after thermal cycling. The whisker–resin bonding appeared to be resistant to thermal cycling in water, so that no loss in composite strength or stiffness occurred after prolonged thermal cycling.  相似文献   

5.
Orthorhombic kalsilite (KAlSiO4) was prepared by solid-state reaction from K2CO3, Al2O3, and SiO2. The axial thermal expansion coefficients of the orthorhombic kalsilite were 1.6×10–5°C–1 for the a-axis, 1.6×10–5°C–1 for the b-axis, 2.8×10–5°C–1 for the c-axis, and 2.0×10–5°C–1 for the average from room temperature to 1000°C. A high thermal expansion ceramic consisting of the orthorhombic kalsilite was prepared by sintering. The densification was promoted by adding Li2CO3. The KAlSiO4 ceramic sintered at 1200°C for 2 h with 5 wt% Li2CO3 had a bending strength of 65 MPa and linear thermal expansion coefficient of 2.2×10–5 °C–1 from room temperature to 600°C.  相似文献   

6.
This paper provides a new method for fabricating interpenetrating silicon-aluminium network metal-matrix composites. This method involves the infiltration of an aluminium-silicon alloy (Al-12Si-1Mg or Al-30Si-1Mg) liquid into a silicon particle (50 vol %) preform. The silicon particles were partially dissolved by the liquid alloy and, together with silicon contributed by the original Al-Si-Mg matrix, resulted in an Si network after solidification. The network composites were metallurgically sound, with no porosity, and exhibited a thermal expansion coefficient down to 7.7×10–6 °C–1 at 50–100 °C, compressive strength up to 580 MPa, tensile strength up to 160 MPa and Vickers hardness up to 390.  相似文献   

7.
Aluminum matrix composites reinforced by a high volume fraction of ceramic particles provide a novel solution to electronic packaging technology, because of their high thermal conductivity, compatible and tailorable coefficient of thermal expansion (CTE) with chips or substrates, low weight, enhanced specific stiffness, and low cost. In this paper, SiC-particle-reinforced aluminum matrix composites are fabricated by the cost-effective squeeze-casting technology, and their microstructure characteristics, thermo-physical, and mechanical properties are investigated. The reinforcement volume fraction is as high as 70% and composites with linear CTE of 6.9–9.7×10–6 °C–1 and thermal conductivity of 120–170 W m–1 °C–1 are produced. The composites can be electric-discharge machined, ground, and electric-spark drilled. An electroless nickel layer is plated on the composite by the conventional procedures. Finally, their potential applications in electronic packaging and thermal management are illustrated via prototype examples.  相似文献   

8.
The curing and pyrolysis of hydrogen-containing polysiloxane (PSO) and divinylbenzene (DVB) were investigated in this paper. It was found that H2PtCl6 was an effective catalyst for the curing of DVB/PSO. The mass ratio of DVB/PSO had great effect on ceramic yield. The cured DVB/PSO with a mass ratio of 0.5:1 had the highest ceramic yield (76%) at temperature up to 1000°C, and its pyrolysates consisted of 38.3 wt% silicon, 27.4 wt% oxygen, and 34.3 wt% carbon of which 26.3 wt% was free carbon. The composition and structure of pyrolysates of DVB/PSO were changed with increasing pyrolysis temperature. The pyrolysis behavior of DVB/PSO was characterized by thermal analysis. DVB/PSO-derived Si–O–C composites reinforced with carbon fiber cloth (Cf/Si–O–C) were fabricated. The results showed that the flexural strength of Cf/Si–O–C composites could be increased from 118.00 ± 5.00 MPa to 139.78 ± 7.68 MPa if the pyrolysis temperature was elevated from 1000 to 1400°C, which was ascribed to the weakened interfacial bonding.  相似文献   

9.
Experimental results are presented on the measurements of thermal expansion (up to 1500°C), thermal conductivity (up to 1000°C), dielectric constant (up to 450 °C) and tan (up to 800 °C) of zirconyl phosphate compacts obtained by sintering at 1600°C. The thermal expansion coefficient of the samples at the temperature below 1100°C was less than 1.7 × 10–6°C–1. The samples showed a definite shrinkage at temperatures of 1110 and 1470°C due to the phase transformations. The expansion at 1500°C was less than that at 1100°C probably because of the phase transformation. The thermal conductivity at room temperature was a very small value (0.0046 to 0.0065 cal s–1 cm°C–1 cm–2). The dielectric constant was close to 9. The value of tan° (–0.0001) measured is one of the lowest values for ceramic materials.  相似文献   

10.
Thermal expansion values for three TiAl alloys with different additions of TiB2 can be represented using a third-order equation at temperatures between 20 and 800°C. Expansion values were obtained on both heating and cooling temperature cycles. The total expansion at 800°C is between 0.917 and 0.931% for three different samples. The expansivity increases from about 10×10–6°C–1 at 80°C to 14×10–6°C–1 at 750°C. A five-coaxial cylinder elastic model for multizone-coated continuous fiber composites is developed for predicting stresses and thermal expansion of composites. Either isotropic or transversely isotropic material properties can be assigned to the various cylinder zones.Paper presented at the Tenth International Thermal Expansion Symposium, June 6–7, 1989, Boulder, Colorado, U.S.A.  相似文献   

11.
A homogeneous composite material with different physical structures has been fabricated from recycled colourless soda-lime glass powders and phlogopite-type mica powders by mixing the two powder components and sintering the mixture at a temperature above 850° C for a period of 30 min or longer. The physical structure of the composite material can be fabricated into either a cellular structure consisting of both closed and open cells or a highly densified ceramic body. The cellular structure composite material is found to have a compressive strength of about 0.877 MN m–2 and thermal conductivity values in the range of 0.290 to 0.306 W m–1 °C–1 when measured at temperatures in the range of 25 to 100° C. The highly densified composite material, on the other hand, is found to have a compressive strength of about 53.0 MN m–2 and thermal conductivity values in the range of 0.198 to 0.250 W m–1 °C–1. The composite material, when compared with other common building materials, is found to be potential material for construction applications because of its superior mechanical and thermal properties.  相似文献   

12.
The microstructure, hardness, fracture toughness and thermal shock resistance were investigated for 15 vol.% TiC0.3N0.7 whisker reinforced β-sialon (Si6−zAlzO2N8−z with z=0.6) composites with additions of three different volume fractions 2, 5 and 20 vol.%, of an yttrium-containing glass oxynitride phase. The composites were prepared by hot pressing at 1750°C for 90 min under a uniaxial pressure of 30 MPa in nitrogen atmosphere. The TiC0.3N0.7 whiskers were found to survive without deteriorating in morphology or reacting with the β-sialon matrix and/or the glass phase. The TiC0.3N0.7 whiskers had no obvious influence on the matrix microstructure, but their presence improved both the hardness and the fracture toughness of the composites. The highest hardness was obtained for the whisker composite with 2 vol.% glass phase (Hv=18.6 GPa). The fracture toughness and thermal shock resistance improved with increasing glass content. The whisker reinforced composite containing 20 vol.% glass showed the highest fracture toughness (K1C=6.8 MPa m1/2). No unstable crack extension occurred during the thermal shock test of the obtained composites in the temperature interval 90-700°C, but above 700°C severe oxidation of the whiskers precludes further evaluation of thermal shock properties by the indentation-quench method applied.  相似文献   

13.
B4C based ceramics composites with 0–25 mol% CrB2 were fabricated by pressureless sintering in the temperature range 1850°C to 2030°C. The CrB2 addition enhanced the densification of B4C due to the CrB2–B4C eutectic liquid phase formation. Both a high strength of 525 MPa and a modest fracture toughness of 3.7 MPa m1/2 were obtained for the B4C–20 mol% CrB2 composite with a high-relative density of 98.1% after sintering at 2030°C. The improvement in fracture toughness is thought to result from the formation of microcracks and the deflection of propagating cracks resulting from the thermal expansion mismatch of CrB2 and B4C.  相似文献   

14.
Silicon carbide (SiC) composites reinforced with 10–50 mass% (10.5–51.2 vol%) of short Tyranno® Si-Zr-C-O fibre (average length 0.5 mm) and 0–10 mol% of Al4C3as a sintering aid were fabricated using the hot-pressing technique. Firstly, the effect of Si-Zr-C-O fibre addition on the relative density (bulk density/true density) of the SiC composite hot-pressed at 1800 °C for 30 min was examined by fixing the amount of Al4C3to be 5 mol%. Although the relative density was reduced to 87.4% for 10 mass% of Si-Zr-C-O addition, further increases in the amount of Si-Zr-C-O fibre increased density to a maximum of 92.8% at 40 mass% of fibre addition. Secondly, the effect of varying the amount of Al4C3addition on the relative density was examined by fixing the amount of Si-Zr-C-O fibre to be 40 mass%. The optimum amount of Al4C3addition for the fabrication of dense SiC composite was found to be 5 mol%. The fracture toughness of the hot-pressed SiC composites with 20–40 mass% of Si-Zr-C-O fibre addition (amount of Al4C3: 5 mol%) was 3.2–3.4 MPa · m1/2and approximately 1.5 times higher than that (2.39 MPa · m1/2) of the hot-pressed SiC composite with no Si-Zr-C-O fibre addition. SEM observation showed evidence of Si-Zr-C-O fibre debonding and pull-out at the fracture surfaces. The hot-pressed SiC composite with 5 mol% of Al4C3and 40 mass% of Si-Zr-C-O fibre additions showed excellent heat-resistance at 1300 °C in air due to the formation of a SiO2layer at and near exposed surfaces.  相似文献   

15.
The piezoelectric ultrasonic composite oscillator technique (PUCOT), operating near 80 kHz, was used to measure the temperature dependence, in the range 23–1000 °C, of dynamic Young's modulus,E, and internal friction,Q –1 in three compositions of low-pressure plasma-sprayed NiCrAlY: Ni-15.6Cr-5.2Al-0.20Y (16-5), Ni-17.2Cr-11.6Al-0.98Y (17–12), and Ni-33Cr-6.2 Al-0.95 Y (33–6). Ambient temperature (23 °C) dynamic Young's moduli for the three alloys were 205.0, 199.8, and 231.0 GPa, respectively. In each case, dE/dT was found to be — 0.06 GPa °C–1 over temperature ranges 23–800, 23–400 and 600–900, and 23–700 °C, respectively. Internal friction was essentially independent of temperature to about 600 °C (700 °C for the 16–5 alloy), at which point a temperature dependence of the formQ –1 =A exp (C/RT) was observed. The constantA for the three alloys was determined to be 62.7, 555, and 2.01 × 106, respectively. The constantC for the three alloys was determined to be 82.8, 111, and 170 kJ/mol–1, respectively. While the physical mechanism is not fully understood, both the pre-exponential constantA and the activation energyC correlate with durability in thermal barrier coatings (TBCs) wherein these alloys are used as bond coats.  相似文献   

16.
Carbon fibre-reinforced silicon nitride composite   总被引:1,自引:0,他引:1  
The processing of silicon nitride reinforced with carbon fibre was studied. The problems of physical and chemical incompatibility between carbon fibre and the silicon nitride matrix were solved by addition of a small amount of zirconia to the matrix and by low-temperature hot-pressing. The composite material possesses a much higher toughness than hot-pressed silicon nitride. Its work of fracture increased from 19.3 J m–2 for unreinforced Si3N4, to 4770 J m–2; its fracture toughness,K lc , increased from 3.7 MN m–3/2 for unreinforced material, to 15.6 MN m–3/2. The strength remains about the same as unreinforced Si3N4 and the thermal expansion coefficient is only 2.51×10–6 ° C–1 (RT to 1000° C). It is anticipated that this composite may be promising because of its mechanical and good thermal shock-resistance properties.  相似文献   

17.
The heat capacity, thermal conductivity and coefficient of thermal expansion of MoSi2 and 18 vol % SiC whisker-reinforced MoSi2 were investigated as a function of temperature. The materials were prepared by hot isostatic pressing between 1650 and 1700 °C, the hold time at temperature being 4 h. The heat capacity of MoSi2 showed an increase from about 0.44 Wsg–11K–1 at room temperature to 0.53 at 700 °C. Whisker reinforcement increased heat capacity by about 10%. Thermal conductivity exhibited a decreasing trend from 0.63 Wcm–1 K–1 at room temperature to 0.28 Wem–1 K–1 at 1400°C. Whiskers reduced conductivity by about 10%. The thermal expansion coefficient increased from 7.42 °C–1 between room temperature and 200 °C to 9.13 °C–1 between room temperature and 1200 °C. There was a 10% decrease resulting from the whiskers. The measured data are compared with literature values. The trends in the data and their potential implications for high-temperature aerospace applications of MoSi2 are discussed.  相似文献   

18.
Single phase (Sr1–x K2x )Zr4(PO4)6, where x lies between 0.0 and 1.0, ceramic powder with a submicron scale particle size has been synthesized successfully at calcination temperatures as low as 650–750°C by a sol-gel technique. The formation of the powder strongly depends on calcination temperature, but is independent of solution pH in the studied range. Dilatometric measurement shows an ultra-low linear coefficient of thermal expansion of 0.1×10–6°C–1 when x=0.5 at temperature intervals of 25–1000°C. Thermal conductivity and flexural strength of the materials were determined at ambient temperature to be 1.0 Wm–1K–1 and as high as 280 MPa, respectively, indicating that this material can be an excellent candidate in many applications, especially those subjected directly to severe environments.  相似文献   

19.
Thermal expansion of the cubic beta or (3C) polytype of SiC was measured from 20 to 1000° C by the X-ray diffraction technique. Over that temperature range, the coefficient of thermal expansion can be expressed as the second order polynominal: 11=3.19×10–6+ 3.60×10–9 T–1.68×10–12 T 2 (1/° C). It increases continuously from about 3.2×10–6/° C at room temperature to 5.1×10–6/° C at 1000° C, with an average value of 4.45 × 10–6/° C between room temperature and 1000° C. This trend is compared with other published results and is discussed in terms of structural contributions to the thermal expansion.  相似文献   

20.
A novel process is introduced for the fabrication of dense, shaped ceramic/metal composites of high ceramic content: the Displacive Compensation of Porosity (DCP) method. In this process, a metallic liquid is allowed to infiltrate and undergo a displacement reaction with a porous oxide preform. Unlike other displacement-reaction-based processes (e.g., the C4, RMP, and AAA processes), a larger volume of oxide is generated than is consumed, so that composites with relatively high ceramic contents can be fabricated. Bar- and disk-shaped MgO/Mg-Al composites were produced by the infiltration and reaction of molten Mg with porous Al2O3 preforms at 1000 °C. By varying the relative density of the preforms (from 53.3 to 71.0% of theoretical), the magnesia content of the final composites could be adjusted from 70.4 to 85.6 vol %. Because the increase in oxide volume associated with the conversion of alumina into magnesia was accommodated by the prior pore volume of the preforms, the composites retained the shapes and dimensions (to within a few percent) of the starting preforms. The MgO/Mg-Al composites were lightweight (2.94–3.30 g/cm3), dense (97.7–99.0% of theoretical), and resistant to hydration. Bar-shaped MgO/Mg-Al composites exhibited average flexural strength and indentation toughness values of 244 MPa and 5.4 MPa · m1/2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号