首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 591 毫秒
1.
The use of phase‐transfer catalysts, with water‐insoluble initiators, for polymerization and graft copolymerization reactions was explored. The polymerization of a water‐soluble vinyl monomer, acrylamide (AAm), and the graft copolymerization of AAm onto a water‐insoluble polymer backbone, isotactic polypropylene (IPP), with a water‐insoluble initiator, benzoyl peroxide (BPO), and a phase‐transfer catalyst, tetrabutyl ammonium bromide (Bu4N+Br?), were carried out in a water/xylene binary solvent system. The conversion percentage of AAm into polyacrylamide (PAAm) and the percentage of grafting of AAm onto IPP were determined as functions of various reaction parameters, such as the BPO, AAm, and phase‐transfer‐catalyst concentrations, the amounts of water and xylene in the water/xylene mixture, the time, and the temperature. The graft copolymer, IPP‐g‐PAAm, was characterized with IR spectroscopy and thermogravimetric analysis. By a comparison of the results of the phase‐transfer‐catalyzed graft copolymerization of AAm onto IPP and the preirradiation method, it was observed that the optimum reaction conditions were milder for the phase‐transfer‐catalyst‐aided graft copolymerization. Milder reaction conditions, including the temperature, the time of reaction, and a moderate initiator (BPO), in comparison with high‐energy γ‐rays, led to better quality products, and the reaction proceeded smoothly with high productivity. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2364–2375, 2004  相似文献   

2.
UV‐radiation‐induced graft copolymerization of methacrylic acid and acrylic acid onto jute fibre was carried out using a preirradiation method with 1‐hydroxycyclohexyl‐phenylketone as a photoinitiator. 2‐methyl‐2‐propene 1‐sulfonic acid, sodium salt was incorporated into the grafting solution in suppressing the homopolymer/gel formation and facilitating graft copolymerization. In comparison, results showed that the type of monomer significantly influence on grafting. The results of the characterisation showed that the graft weight and the type of monomer have significant influence on the mechanical and water absorption properties in the case of grafted samples. Copyright © 2004 Society of Chemical Industry  相似文献   

3.
In this study, melt‐blown polypropylene (PP) nonwovens were used as substrates for the metallic deposition of copper. The substrates were pretreated by O2 plasma, followed by treatments such as sensitization, activation, and reduction. The effects of the copper sulfate concentration, reaction temperature, and plasma power on the conductivity and adhesion strength of the PP nonwovens were investigated after copper deposition. The morphology of the PP nonwovens after copper deposition, analyzed by scanning electron microscopy and atomic force microscopy, revealed that copper nanoclusters were deposited on the fiber surface with a smooth surface morphology and dense structure. X‐ray photoelectron spectroscopy indicated that the copper was present mainly in the form of the elementary substance, which coexisted with a little Cu2+. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
UV radiation induced graft copolymerization of 2‐hydroxyethyl methacrylate onto natural lignocellulose (jute) fiber was carried out by two methods: simultaneous irradiation and grafting and preirradiation grafting. 1‐Hydroxycyclohexyl‐phenylketone was used as the photoinitiator in both methods. In the former method, the variation of the graft weight was measured for different values of radiation exposure time and the concentrations of both the monomer and photoinitiator. The latter method produced up to 76% graft weight compared to 45% obtained with the former method. The preirradiation method offers better control of the homopolymerization reaction compared to that afforded by the other method. The optimum value of the reaction parameters on the graft weight was evaluated. The mechanical properties of grafted samples were found to be drastically different from those of the as‐received ones and the effect was proportional to the percentage of graft weight. Differential scanning calorimetry studies showed that the percentage of graft add‐on of hydroxyethyl methacrylate with jute had a significant effect on the thermal properties. IR studies indicated the degree of grafting could be estimated by correlating the band intensities with the graft weight. The jute samples grafted with poly(hydroxyethyl methacrylate) at a level of 12% graft weight exhibited a maximum 20% increase in hydrophilicity. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2898–2910, 2006  相似文献   

5.
We carried out the graft copolymerization of the water‐soluble natural polymer dextrin onto preirradiated polypropylene (PP) in an aqueous medium using benzoyl peroxide (BPO) as the radical initiator. PP was irradiated by γ rays from a Co60 source at a constant dose rate of 3.40 kGy/h to introduce hydroperoxide linkages, which served as the sites for grafting. The graft copolymerization was studied as a function of different reaction parameters, and the maximum percentage grafting (Pg; 55%) of dextrin onto PP was obtained at optimum conditions of [BPO] = 5.165 × 10−2 mol/L, temperature = 60°C in 120 min with 15 mL of water. Different grafting parameters, such as the percentage apparent grafting, percentage grafting, and percentage true grafting have been evaluated. The graft copolymers were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. Swelling studies were carried out in pure, binary, ternary, and quaternary solvent systems composed of water, ethanol (EtOH), dimethyl sulfoxide (DMSO), and N,N‐dimethylformamide (DMF) at different ratios. The maximum swelling percentage PP‐g‐dextrin (both composite and true graft) was observed in pure DMSO and DMF followed by EtOH and water. Water‐retention studies of PP and PP‐g‐dextrin (both composite and true graft) were investigated at different time periods, temperatures, and pH values. The maximum percentage water retention of PP‐g‐dextrin (composite, 124%) was observed at 8 h and 50°C in a neutral medium (pH 7). © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
In this study, a new type of polypropylene (PP)/polyester (PET) bicomponent melt‐blown (bi‐MB) for filtration was developed through the melt‐blowing process with raw materials of melt‐blown (MB)‐grade PP and PET chips. The structure, porosity, and filtration performance of the bi‐MBs were tested through relevant instruments. The results show that the average fiber diameter in the bi‐MBs was 2–3.5 μm, the average pore size was 12.3–15.6 μm, and the porosity was 90–94%. The results also show that the filtration efficiency of the bi‐MBs was much higher than that of monocomponent PP MBs. It reached the highest value of 97.34% when the PP/PET ratio was 50/50 and could be used as high‐performance filter media. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
A polymer air‐drawing model of Polybutylene Terephthalate (PBT) melt‐blown nonwovens has been established. The predicted fiber diameter coincides with the experimental data. The effects of the processing parameters on the fiber diameter have been investigated. A lower polymer flow rate, a higher initial air velocity, and a larger die‐to‐collector distance can all produce finer fibers, whereas too high an initial air velocity and too large a die‐to‐collector distance contribute little to the polymer drawing of PBT melt‐blown nonwovens. The results show the great potential of this research for the computer‐assisted design of melt‐blowing technology. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1750–1752, 2005  相似文献   

8.
Nanocomposites of polypropylene (PP) and montmorillonites (MMT) were prepared by solid‐phase grafting reactive organomontmorillonite (ROMT) and polar monomers onto powdered PP and melt‐blending granule PP with the master batches as PP/MMT grafting copolymers (PPMG). The structure and properties of the PP/MMT nanocomposites (PPMN) were investigated by gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD) patterns, transmission electron microscopy (TEM), dynamic mechanical analysis, differential scanning calorimetry, and thermogravimetric analysis. GPC showed that the numerical molecular weight and polydispersity of the graft copolymers of PPMG were approximately 4793 and 2.197, respectively. FTIR confirmed the solid‐phase graft copolymerization. XRD and TEM indicated the formation of the exfoliated, layered silicates (tactoids). The mole ratio of compound alkylammoniums and the exothermic enthalpy from solid‐phase graft copolymerization played key roles in the formation of tactoids. The optimum mole ratio of organophilic alkylammonium to reactive alkylammonium was 3 : 1. The mechanical and thermal properties increased with the contents of PPMG, and a preferable state was achieved at approximately 8 phr PPMG (parts of reagent per 100 parts of PP) because of the plastification of the exfoliated silicates and the graft copolymers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3889–3899, 2006  相似文献   

9.
The graft copolymerization of butyl acrylate (BA) onto chitosan was tried via a new protection‐graft‐deprotection procedure. About 6‐O‐maleoyl‐N‐phthaloyl‐chitosan was synthesized and characterized by Fourier transform infrared spectra analysis (FT‐IR) and 1H‐NMR. Because the intermediate 6‐O‐maleoyl‐N‐phthaloyl‐chitosan was soluble in organic solvents, the graft copolymerization was carried out in a homogeneous system. Grafting was initiated by γ‐irradiation. The graft extent was dependent on the irradiation dose and the concentration of BA monomer, and copolymers with grafting above 100% were readily prepared. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 489–493, 2006  相似文献   

10.
Graft copolymerization of starch has been carried out onto preirradiated polypropylene (PP) in an aqueous medium using benzoyl peroxide (BPO) as the radical initiator. The maximum percentage of grafting (115%) of starch onto PP was obtained at optimum conditions of BPO concentration, 1.239 × 10−3 moles; temperature, 65°C; in 120 min. using 30 mL of water. Swelling studies were carried out in pure, binary, ternary and quaternary solvent systems comprising of water, ethanol (EtOH), dimethylsulphoxide (DMSO), and N,N‐dimethylformamide (DMF) in different ratios. Maximum swelling is observed in DMSO and DMF, followed by EtOH and least in water for true graft. Water retention studies of pristine PP and PP‐g‐Starch (both composite and true graft) were investigated at different time periods, temperature and pH. The composite contains grafted PP, unreacted starch and unreacted PP whereas true graft is the product from which both unreacted polymers have been removed. Maximum % water retention of PP‐g‐Starch (composite) (110%) was observed in 8 h at 50°C in neutral medium (pH = 7). The graft copolymers were characterized by FTIR, DTG, DTA, TGA, and SEM. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
A xanthan gum‐gN‐vinyl formamide graft copolymer was synthesized through the graft copolymerization of N‐vinyl formamide (NVF) onto xanthan gum with an efficient system, that is, potassium monopersulfate (PMS)/Ag(I) in an aqueous medium. The effects of the concentrations of Ag(I), PMS (KHSO5), hydrogen ion, xanthan gum, and NVF along with the time and temperature on the graft copolymerization were studied by the determination of the grafting parameters (grafting ratio, add‐on, conversion, grafting efficiency, and homopolymer) and the rate of grafting. The maximum grafting ratio was obtained at a 0.6 g/dm3 concentration of xanthan gum. All the parameters showed an increasing trend with an increasing concentration of peroxymonosulfate, except the homopolymer percentage, which showed a decreasing trend. The grafting ratio, add‐on conversion, grafting efficiency, and rate of grafting increased with the concentration of Ag(I) increasing from 0.8 × 10?2 to 1.2 × 10?2 mol/dm3. The optimum time and temperature for the maximum degree of grafting were 90 min and 35°C, respectively. The graft copolymer was characterized with IR spectral analysis, thermogravimetric analysis, and differential calorimetry analysis. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1637–1645, 2006  相似文献   

12.
Isotactic polypropylene graft copolymers, isotactic[polypropylene‐graft‐poly(methyl methacrylate)] (i‐PP‐g‐PMMA) and isotactic[polypropylene‐graft‐polystyrene] (i‐PP‐g‐PS), were prepared by atom‐transfer radical polymerization (ATRP) using a 2‐bromopropionic ester macro‐initiator from functional polypropylene‐containing hydroxyl groups. This kind of functionalized propylene can be obtained by copolymerization of propylene and borane monomer using isospecific MgCl2‐supported TiCl4 as catalyst. Both the graft density and the molecular weights of i‐PP‐based graft copolymers were controlled by changing the hydroxyl group contents of functionalized polypropylene and the amount of monomer used in the grafting reaction. The effect of i‐PP‐g‐PS graft copolymer on PP‐PS blends and that of i‐PP‐g‐PMMA graft copolymer on PP‐PMMA blends were studied by scanning electron microscopy. Copyright © 2006 Society of Chemical Industry  相似文献   

13.
Ce(IV)‐induced graft copolymerization of methacrylic acid (MAA) on polysulphone (PSU) surface is studied. After pretreatment either by formaldehyde solution or by air glow discharge plasma, the PSU fiber membrane was immersed in MAA solution with Ce(IV) and heated under 80°C under N2 protection. The MAA was induced by the Ce(IV) redox initiation system to polymerize on the PSU fiber membrane surface. It was found that the pretreatment of the membrane is a very necessary condition for the graft copolymerization to obtain high graft degree. For both the formaldehyde and the air glow discharge plasma pretreated membrane, the graft degree increase with the reaction time. To study the reaction mechanism, control experiments were carried out. Membrane surfaces were characterized by ATR‐FTIR and XPS. The reaction mechanism of the graft copolymerization was discussed based on the experimental data. The effect of the graft copolymerization on the membrane's structure and water permeability was finally studied. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3835–3841, 2006  相似文献   

14.
This article concerns the in situ compatibilization of immiscible isotactic polypropylene/butadiene‐styrene‐butadiene triblock copolymer blends (i‐PP/SBS) by means of a reactive mixture. For this purpose, maleated PP (PP‐MAH) and SBS (SBS‐MAH) were used as functionalized polymers and 4,4′‐diaminediphenylmethane was used as a coupling agent between maleated polymers, resulting in a graft copolymer. Binary blends i‐PP/SBS, nonreactive ternary blends i‐PP/PP‐MAH/SBS, and reactive ternary blends i‐PP/PP‐MAH/SBS‐MAH with varying diamine and anhydride molar ratios were prepared. Torque measurements suggest a graft copolymerization during the melt blending for ternary reactive blends, but the extension of the grafting does not vary with the diamine and anhydride molar ratio, but with the elastomer concentration. The morphology of the blends was investigated by scanning electron microscopy. The morphology of binary and ternary nonreactive blends is similar, exhibiting elastomer domains disperse in the i‐PP matrix, whose sizes increase with elastomer concentration. On the other hand, the elastomer domain size in the ternary reactive blends is practically independent of the blends composition and of the diamine and anhydride molar ratio. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 847–855, 2002  相似文献   

15.
Summary: VP and co‐monomers DMAAm and ST were successfully grafted onto a PP fabric in an emulsion copolymerization process initiated by γ‐radiation. The radiation dose, concentration of VP, the ratio of VP/DMAAm and VP/ST in the reaction solution, and the reaction temperature dependent graft copolymerization were investigated. The order of dependence of the initial rate of grafting on the radiation dose was found to be in the range of 1.2 to 0.93 for VP; 0.84 to 0.70 for VP/DMAAm and for VP/ST was in the range of 0.59 to 0.41. The activation energy of the graft copolymer reaction was determined to be 40.18 J · mol?1 for 0.464 mol · L?1 VP. In the case of co‐monomer mixtures (VP/DMAAm: 0.464/0.5) the energy of activation was noticeably higher at 49.71 J · mol?1 while for VP/ST (0.464/0.436) the activation energy was same as that of VP. XRD results showed that overall crystallinity significantly decreased with the increase of graft weight with a noticeable change in the chemical structure of the PP, indicating that the graft copolymer reaction was taking place both in the amorphous and crystalline regions of PP. A similar characteristic behavior was also obtained by DSC, which revealed the presence of an endotherm process in the range of 25 to 130 °C depending on the degree of grafting, attributed to the grafted chains of the monomer/co‐monomers. In order to determine the graft copolymer reaction of VP, DMAAm and ST onto the backbone of PP, the reaction products were characterized by FTIR spectroscopy. A good correlation was found between changes of crystallinity and level of graft copolymerization as determined by WAXRD and DSC.

Typical XRD traces of as‐received PP fabric (PPF) and grafted with VP (PPF‐g‐VP).  相似文献   


16.
The graft copolymerization of acrylamide (AAm) monomer onto polyethylene‐coated polypropylene (PE‐co‐PP) nonwoven fabric was carried out by the mutual irradiation method. The general peculiarities of the grafting have been studied by gravimetric, scanning electron microscope (SEM), mechanical properties, and Fourier transform infrared (FTIR) methods. The influence of absorbed dose, dose rate, as well as the monomer concentration on the degree of grafting has been determined. Metal ions uptake of Cu2+, Co2+, Ni2+ by the grafted fabrics was evaluated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3240–3245, 2006  相似文献   

17.
Functionalization of polypropylene (PP) by radical graft polymerization with Ntert‐butylacrylamide (NTBA) was successfully conducted during melt extrusion, and the grafted products were employed as precursors of biocidal N‐halamine polymers. Graft polymerization conditions, including monomer and initiator concentrations, addition of a comonomer styrene (St), were studied. Fourier transformed spectroscopy (FTIR) results and nitrogen analysis confirmed the graft polymerization on PP backbone during the reactive extrusion. The results also indicated that increase in initiator concentration led to more PP chain scission and reduction in mixing torque or polymer chain length. As the monomer concentration rose, grafted monomer content in the products improved, revealing increased grafting copolymerization in the system. Addition of St as a comonomer adversely affected grafting of NTBA, but significantly prevented polymer chain scission. This may be due to lower tendency of NTBA for copolymerization. The halogenated products exhibited potent antimicrobial properties against Escherichia coli, and the antimicrobial properties were durable and regenerable. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

18.
Modification of polypropylene (PP) has been successfully carried out by graft copolymerization of gelatin, by chemical method using benzoyl peroxide (BPO) as radical initiator. PP was preirradiated by gamma rays at a constant dose rate of 3.40 kGy/h before grafting to introduce hydroperoxide groups. Optimum conditions pertaining to maximum percentage of grafting were evaluated as a function of different reaction parameters. Maximum percentage of grafting of gelatin (115%) was obtained at BPO concentration = 4.132 × 10?2 mol/L in 120 min at 70°C using 30 mL of water. Characterization of PP‐g‐gelatin was carried out through FTIR, thermogravimetric analysis, and scanning electron microscopy. Swelling studies were carried out in pure, binary, ternary, and quaternary solvent systems comprising distilled water, ethanol, dimethylsulphoxide (DMSO), and N,N‐dimethylformamide (DMF) in different ratios. Maximum swelling of PP‐g‐gelatin (both composite and true graft) was observed in pure solvents that is, DMSO followed by DMF, ethanol, and water and was higher than that observed in the mixed solvent system. Water retention studies of unmodified PP, that is, pristine PP and PP‐g‐gelatin (both composite and true graft) were investigated at different time periods, temperatures and pH. Maximum % water retention for PP‐g‐gelatin (composite; 170%) was observed in 8 h at 50°C in neutral medium (pH = 7). © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Surface‐modified polypropylene (PP) films with thermally and photochemically sensitive copolymers consisting of N‐(2‐hydroxypropyl)methacrylamide (HPMA) and 4‐(4‐methoxyphenylazo)phenyl methacrylate (MPAP), poly(HPMA‐co‐MPAP)‐g‐PP (abbreviated g‐PP) film, were prepared by graft copolymerization with an Ar‐plasma postpolymerization technique. The surfaces of the g‐PP films were characterized by means of X‐ray photoelectron spectroscopy; the percentage grafting of poly(HPMA‐co‐MPAP) with a number‐average molecular weight of 3.28 × 104 was 7.12%, and the molar ratio of HPMA–MPAH in the copolymer was 0.75:0.25. The stimuli‐sensitive adsorption of albumin and polystyrene microspheres on the g‐PP film was also measured. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 143–148, 2003  相似文献   

20.
Acrylic acid (AA) was grafted onto the powdered isotactic polypropylene (i‐PP) with the electron‐beam‐induced preirradiation method (Chen, D.‐T.; Shi, N.; Xu, D.‐F. J Appl Polym Sci 1999, 73, 1357–1362). Some rare earth ions, including Sm3+, Nd3+, Eu3+, Gd3+, and Er3+, were adsorbed onto the grafting product PP‐g‐AA. The properties of Sm3+ adsorbed were investigated in detail. These properties include the influences of the adsorption time, acidity, ion concentration of the solution, grafting yield of AA onto i‐PP, and temperature on the quantity and efficiency of the ion adsorption. Some kinetic and thermodynamic equilibrium constants of the adsorption were obtained in the experiments. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1549–1553, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号