首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glass fiber/epoxy composites were thermally conditioned at 50, 100, 150, 200, and 250°C for different periods of time and then immediately quenched directly in ice‐cold water from each stage of conditioning temperature. The polymerization or depolymerization by thermal conditioning and the debonding effect by concurrently following thermal shock in polymer composites are assessed in the present study. The short‐beam shear tests were performed at room temperature on the quenched samples to evaluate the value of interlaminar shear strength of the composites. The short conditioning time followed by thermal shock resulted in reduction of shear strength of the composites. The strength started regaining its original value with longer conditioning time. Conditioning at 250°C and thereafter quenching yielded a sharp and continuous fall in the shear strength. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2062–2066, 2006  相似文献   

2.
E‐glass fibers of 55, 60, and 65 weight percentages were reinforced with epoxy matrix to prepare the laminated composites. They were exposed to ?40, ?60, and ?80°C temperatures for different times. The 3‐piont bend test was conducted on the conditioned samples at those temperatures. Mechanical test was carried out at 2 mm/min and 500 mm/min crosshead speeds. The main emphasis of the investigation was to evaluate the roles of percentage matrix phase and interfacial areas on the interlaminar shear failure mechanism of glass/epoxy composites at ultralow temperatures for different loading speeds. The mechanical performances of the laminated specimens at low temperatures were compared with room temperature property. The loading rate sensitivity of the polymer composites appeared to be inconsistent and contradictory at some points of conditioning time and as well as at a temperature of conditioning. This Phenomenon may be attributed to low‐temperature hardening, matrix cracking, misfit strain due to differential thermal coefficient of the constituent phases, and also to enhanced mechanical keying factor by compressive residual stresses at low temperatures. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2289–2292, 2006  相似文献   

3.
Internal stress analysis is essential to structural design of materials applied in cryogenic engineering. In this contribution, thermomechanical properties including dynamic thermomechanical properties and thermal expansion behavior of four epoxy resins, namely the polyurethane modified epoxy resin (PUE), diglycidyl ether of bisphenol A (DGEBA), tetraglycidyl-4,4′-diaminodiphenylmethane (TGDDM) and triglycidyl-p-aminophenol (TGPAP) were studied by dynamic thermomechanical analysis. Internal stress of the epoxy layer in the bonded joint was calculated based on the thermomechanical properties. Meanwhile, the structure-cryogenic property relationship of epoxy resins were investigated. Results demonstrate that internal stress in the four epoxies bonded joints is 6 ~ 21 MPa at −150°C, and is positively correlated with the average thermal expansion coefficient (CTE) of epoxy resins. TGDDM and TGPAP showed higher retention of lap shear strength both at −196°C and after temperature cycling due to their lower CTE. Morphology of the fractured surface of bonded joints demonstrated that internal stress is responsible for the severe interface failure at −196°C. It reveals that selection of epoxy resins with low CTE is beneficial for designing high-performance epoxy adhesive systems served at cryogenic temperature.  相似文献   

4.
Carbon fiber reinforced epoxy (CE) composite is ideal for a cryogenic fuel storage tank in space applications due to its unmatched specific strength and modulus. In this article, inter-laminar shear strength (ILSS) of carbon fiber/epoxy (CE) composite is shown to be considerably improved by engineering the interface with carboxyl functionalized multi-walled carbon nanotube (FCNT) using electrophoretic deposition technique. FCNT deposited fibers from different bath concentrations (0.3, 0.5, and 1.0 g/L) were used to fabricate the laminates, which were then tested at room (30°C) and in-situ liquid nitrogen (LN) (−196°C) temperature as well as conditioning for different time durations (0.25, 0.5, 1, 6, and 12 h) followed by immediate RT testing to study the applicability of these engineered materials at the cryogenic environment. A maximum increment in ILSS was noticed at bath concentration of 0.5 g/L, which was ~21% and ~ 17% higher than neat composite at 30°C and − 196°C, respectively. Short-term LN conditioning was found to be detrimental due to developed cryogenic shock, which was further found to be compensated by cryogenic interfacial clamping upon long-term exposure.  相似文献   

5.
The diffusive and mechanical behavior of tetraglycidyl diaminodiphenyl methane (TGDDM) resin-based composites and diglycidyl ether of bisphenol-A (DGEBA) resin-based graphite/epoxy composites were investigated during water sorption at different temperatures. The water-absorption kinetics in both systems at 50, 70, 90, and 100°C were fitted by a Fickian diffusion model. However, a Langmuir-type, two-step sorption behavior was observed for water transport in DGEBA-based systems at 50 and 70°C. Using scanning electron microscopy, internal cracks due to water absorption were found in the DGEBA-based samples after conditioning at 90 and 100°C in water, whereas no cracks were detected in TGDDM-based samples conditioned in water at 100°C. Ultrasonic testing did not show significant modulus or density change of the TGDDM-based samples conditioned in water at 100°C. No significant changes of dynamic modulus or damping factor were observed for the TGDDM-based samples redried after immersion in 100°C water, whereas slight changes were observed above 120°C for the samples containing absorbed water. However, both water-containing and redried DGEBA-based samples showed a decrease of dynamic modulus and an ω-transition around 120°C. A single-fiber fragment test revealed that the absorbed water at 80°C reduced significantly the interfacial shear strength of DGEBA/DDA resin-AS4 fiber samples and DGEBA/DDA resin-AU4 fiber samples. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
This article investigated the effect of moisture on the tensile strength and in‐plane shear of laminated composites. For this, the results of a composite system based on a new thermoplastic Elium® 150 resin were compared to a traditional epoxy resin result. Both composites were fabricated via VARTM using a 0/90° plain weave carbon fiber fabric. For the non‐conditioned specimens, the thermoplastic composites presented 30% more tensile resistance in comparison to epoxy composites. For conditioned specimens, this difference was 14%. These results were related to plasticization, which tends to favor the polymer softening providing a greater matrix plastic deformation, promoting a ductile fracture of the composite. On the other hand, the in‐plane shear properties were 30% higher for the thermosetting laminates for both conditions. In this case, moisture may have favored the formation of surface cracks and weakened the fiber/matrix interfacial adhesion. Additional analysis based on design of experiments has shown that the Elium® 150 resin significantly affects all responses and presented in fact a better behavior in comparison to Epoxy resin. While the conditioning effects have featured a statistically noticeable contribution to the tensile strength, the presence of the moisture did not provide a significant enhancement to the in‐plane shear strength. Besides that, the unknown fractographic aspects of the fracture surfaces of both composites were used as a complementary tool for the mechanical characterization. POLYM. ENG. SCI., 59:2185–2194, 2019. © 2019 Society of Plastics Engineers  相似文献   

7.
The well dispersed multiwalled carbon nanotube (MWCNT)/epoxy composites were prepared by functionalization of the MWCNT surfaces with glycidyl methacrylate (GMA). The morphology and thermal properties of the epoxy nanocomposites were investigated and compared with the surface characteristics of MWCNTs. GMA‐grafted MWCNTs improved the dispersion and interfacial adhesion in epoxy resin, and enhanced the network structure. The storage modulus of 3 phr GMA‐MWCNTs/epoxy composites at 50°C increased from 0.32 GPa to 2.87 GPa (enhanced by 799%) and the increased tanδ from 50.5°C to 61.7°C (increased by 11.2°C) comparing with neat epoxy resin, respectively. Furthermore, the thermal conductivity of 3 phr GMA‐MWCNTs/epoxy composite is increased by 183%, from 0.2042 W/mK (neat epoxy) to 0.5781 W/mK. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
The objective of this research was to investigate thermal stability and dynamic mechanical behavior of Exfoliated graphite nanoplatelets (xGnP™)‐Linear Low‐Density Poly Ethylene (LLDPE) nanocomposites with different xGnP loading content. The xGnP‐LLDPE nanocomposites were fabricated by solution and melt mixing in various screw rotating systems such as co‐, counter‐, and modified‐corotating. The storage modulus (E′) of the composites at the starting point of −50°C increased as xGnP contents increased. E′ of the nanocomposite with only 7 wt% of xGnP was 2.5 times higher than that of the control LLDPE. Thermal expansion and the coefficient of thermal expansion of xGnP‐loaded composites were much lower than those of the control LLDPE in the range of 45–80°C (299.8 × 10−6/°C) and 85–100°C (365.3 × 10−6/°C). Thermal stability of the composites was also affected by xGnP dispersion in LLDPE matrix. The xGnP‐LLDPE nanocomposites by counter‐rotating screw system showed higher thermal stability than ones by co‐rotating and modified‐co‐rotating system at 5 wt% and 12 wt% of xGnP. xGnP had a great effect on high thermal stability of xGnP‐LLDPE composites to be applied as tube and film for electrical materials. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

9.
This study compared the shear bond strength of orthodontic brackets to laboratory-processed indirect resin composites (IRC) after different surface conditioning methods and aging. Specimens made of IRC (Gradia Indirect, GC) (thickness: 2 mm; diameter: 10 mm) (N = 80) were randomly assigned to one of the following surface conditioning methods: C – Control: no treatment; AA – Air-abrasion (50 μm Al2O3 particles); DB – Diamond bur and HF – Etching with hydrofluoric acid (9.6%). After adhesive primer application (Transbond XT), orthodontic brackets were bonded to the conditioned IRC specimens using adhesive resin (Transbond XT). Following storage in artificial saliva for 24 h at 37 °C, the specimens were thermocycled (×1000, 5–55 °C). The IRC–bracket interface was loaded under shear in a Universal Testing Machine (0.5 mm/min). Failure types were classified using modified adhesive remnant index criteria. Data were analyzed using two-way ANOVA and Tukey`s HSD (α = 0.05). Surface conditioning method did not significantly affect the bond strength results (p = 0.2020), but aging significantly decreased the results (p = 0.04). Interaction terms were not significant (p = 0.775). In both non-aged and aged conditions, non-conditioned C group presented the lowest bond strength results (MPa) (p < 0.05). In non-aged conditions, surface conditioning with DB (8.03 ± 0.77) and HF (7.87 ± 0.64) showed significantly higher bond strength results compared to those of other groups (p < 0.05). Thermocycling significantly decreased the mean bond strength in all groups (2.24 ± 0.36–6.21 ± 0.59) (p < 0.05). The incidence of Score 5 (all adhesive resin remaining on the specimen) was the highest in HF group without (80%) and with aging (80%) followed by DB (40, 70%, respectively). C groups without and with aging showed exclusively Score 1 type (no adhesive resin on the specimen) of failures indicating the least reliable type of adhesion.  相似文献   

10.
Carbon fiber sheet molding compounds (C-SMCs) are discontinuous fiber reinforced composite materials. Among them, epoxy-based C-SMCs are becoming relevant materials due to their high thermomechanical performance and better formability than continuous fiber reinforced composites. The thermomechanical performance of epoxy resins and epoxy based continuous carbon fiber composites have shown to be influenced by hygrothermal aging. In this work, this influence is studied for an epoxy-based C-SMC. Epoxy-based C-SMC samples were hygrothermally aged by means of accelerated conditioning, exposing them to 65% relative humidity, and 80°C in a climatic chamber. The equilibrium moisture content, as well as the moisture diffusion coefficient has been determined. The thermomechanical properties of epoxy C-SMC have been analyzed by dynamic mechanical analysis, tensile, 3-point bending, and short beam tests in dry and aged samples. The results showed that epoxy C-SMC is affected by hygrothermal aging in the cases of moisture intake and its effects on Tg value, but interestingly, the hygrothermal aging did not generate any degradation effects in the mechanical response of epoxy C-SMC.  相似文献   

11.
Graphite fiber reinforced poly(ether ether ketone) (PEEK) and graphite fiber reinforced bismaleimide (BMI) composite materials are two kinds of advanced fiber-reinforced polymer matrix composites with good thermal stability and excellent mechanical properties at high temperature. They are currently receiving considerable attention. the main limitation on their application is the lack of knowledge regarding their behaviors during extended use at high temperature. Thermal aging properties are the main parameters for new polymer matrix composites that will be used in advanced spacecraft structural components. From the results of thermal aging effects on the properties—including interlaminar shear strength, drop-weight impact strength, and impact energy—of graphite/PEEK and graphite/BMI composites, it is found that unidirectional graphite fiber reinforced composites retain higher strength compared to multidirectional, and that multidirectional graphite/PEEK composites keep higher property retentions than multidirectional graphite/BMI composites after thermal aging at 190°C. From scanning electron photomicrographs, it is also found that graphite/PEEK composites have better fiber/resin adhesion, intraply adhesion, and microcrack resistance compared to graphite/BMI composites after thermal aging.  相似文献   

12.
Abstract

The morphology and mechanical properties of poly(ethylene terephthalate) (PET)–epoxy blends and the application of these blends in continuous glass fibre reinforced composites have been investigated. Epoxy resin was applied as a reactive solvent for PET to obtain homogeneous solutions with a substantially decreased melt viscosity. The epoxy resin in these solutions was cured using an amine hardener according to two different schedules. In the first, high temperature curing at 260°C preceded low temperature crystallisation of the PET at 180°C. In the second, the PET was allowed to crystallise prior to low temperature curing at 180°C. After cure, all blends revealed a phase separated morphology of dispersed epoxy in a continuous PET matrix. The flexural strength and failure strain of all cured blends showed an increase with increasing epoxy content, whereas the high temperature cured blends exhibited overall lower flexural properties than those cured at the lower temperature. Microstructural analysis and flexural properties of continuous glass fibre reinforced PET–epoxy laminates showed that the composites obtained had a low void content. These PET–epoxy laminates had increased inplane shear strength in comparison with unmodified PET based laminates, indicating considerably increased fibre–matrix adhesion.  相似文献   

13.
To develop a new class of composites with adequately high thermal conductivity and suitably controlled dielectric constant for electronic packages and printed circuit board applications, polymer composites are prepared with microsized Al2O3 particle as filler having an average particle size of 80–100 μm. Epoxy and polypropylene (PP) are chosen as matrix materials for this study. Fabrication of epoxy‐based composite is done by hand lay‐up technique and its counterpart PP‐based composite are fabricated by compression molding technique with filler content ranging from 2.5–25 vol%. Effects of filler loading on various thermal properties like effective thermal conductivity (keff), glass transition temperature (Tg), coefficient of thermal expansion (CTE) and electrical property like dielectric constant (εc) of composites are investigated experimentally. In addition, physical properties like density and void fraction of the composites along with there morphological features are also studied. The experimental findings obtained under controlled laboratory conditions are interpreted using appropriate theoretical models. Results show that with addition of 25 vol% of Al2O3, keff of epoxy and PP improve by 482% and 498% respectively, Tg of epoxy increases from 98°C to 116°C and that of PP increases from −14.9°C to 3.4°C. For maximum filler loading of 25 vol% the CTE decreases by 14.8% and 26.4% for epoxy and PP respectively whereas the dielectric constants of the composites get suitably controlled simultaneously. POLYM. COMPOS., 36:102–112, 2015. © 2014 Society of Plastics Engineers  相似文献   

14.
Dynamic mechanical measurements in a torsional (shear) mode have been used to characterize an unfilled epoxy (Epon 828/m-phenylene diamine) and A series of uniaxial graphite fiber (Hercules types A and HM) composites. In unfilled resins containing an excess of the epoxy component, Mc—the average molecular weight between crosslinks—decreases with increasing temperature and duration of cure, suggesting a temperature-dependent side reaction. In fiber-reinforced composites, the dynamic mechanical response is sensitive to fiber type and curing schedule; elevation of Tg by as much as 45°C has been observed. Comparison of the dynamic data with properties predicted by micromechanical models shows only a fair agreement at room temperature, which rapidly worsens at higher temperatures. Surface treatment of type A fibers gives enhanced interlaminar shear strength (ILSS), both at ambient conditions and after hydrothermal aging. Dynamic data for surface-treated systems during hydrothermal aging show a sharper drop in G′ and increase in tan δ. The dynamic data and ILSS results are interpreted in terms of a balance of polymer-fiber interactions, a weak but widespread preferential adsorption of epoxy oligomers on the graphite basal planes at the fiber surface, and a low concentration of covalent bonds between polymer and fiber-surface-functional groups.  相似文献   

15.
The reliability of adhesion performance of bare Cu, as-deposited and surface-hardened black oxide coatings on Cu substrates was studied. The interfacial adhesion with a polyimide adhesive tape and an epoxy moulding compound was measured using the button shear and tape peel tests after hygrothermal ageing in an autoclave, high temperature ageing and thermal cycles. Moisture adsorption and desorption studies at different aging times suggested that the black oxide coating was effective in reducing the moisture adsorption. The bond strengths for all substrates remained almost unchanged after thermal ageing at 150°C for 8 h. Thermal cycling between ?50°C and 150°C for 500 cycles reduced by about 20% the button shear strength of the as-deposited black oxide substrate, but it did change much the bonding performance of the bare Cu substrate. Hygrothermal ageing at 121°C/100% RH in an autoclave was most detrimental to adhesion performance because of the combined effect of elevated temperature and high humidity. The reduction in button shear strength after the initial ageing for 48 h was 50–67%, depending on the type of coating. In all accelerated ageing tests, the residual interfacial bond strengths were consistently much higher for the black-oxide-coated substrates than the bare Cu surface, confirming a higher reliability of black oxide coating. Fracture surfaces analysis of tape-peeled bare copper substrates after 500 cycles of thermal loading revealed a transition in failure mechanism from interfacial to cohesive failure. In contrast, the failure mechanism remained unchanged for black-oxide-coated substrates. The observations made from the button shear and tape peel tests were generally different because of the different fracture modes involved.  相似文献   

16.
In this preliminary study, micromechanical techniques were used to compare the interfacial properties of both carbon and glass fiber composites with two structurally different epoxy matrices (YD‐114 and YDF‐175) at ambient and relatively low temperatures (25°C and −10°C). Tensile modulus of elasticity for both epoxies was higher at lower temperature. Although both fibers exhibited more bimodality at lower temperature than at ambient temperature, glass fiber composites exhibited a statistically greater improvement in tensile strength. This may be attributed to differences in inherent flaws and rigidity. A decrement in stress was observed for YDF‐175 epoxy composites under cyclic loadings at both temperatures, which was attributed to lower interfacial shear strength (IFSS). In contrast to the IFSS of conventional YD‐114 epoxy composites, the IFSS of both the carbon and glass fibers/YDF‐175 epoxy composites studied was higher at the lower temperature. The microfailure pattern observed in microdroplet pullout tests was consistent with the other IFSS results. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

17.
Hygrothermal aging was carried out on vinyl ester (VE) resin cast and its pultruded carbon fiber reinforced composite (CF/VE) by immersing them in distilled water at 65 and 95°C. Hygrothermal aging effects on the samples were studied in terms of thermal–mechanical properties, as well as moisture absorption behavior, interfacial adhesion, and transverse mechanical properties. Moisture absorption behaviors of the VE casts and the CF/VE composites were characterized as Fickian behavior. Dynamic mechanical thermal analysis (DMTA) tests showed that the tan δ peak temperatures of the VE casts and CF/VE composites decreased with immersion time at 65 and 95°C. Moreover, there existed a splitting in the tan δ peaks at 95°C, which was reversible and could be recovered by dehydration. Three‐point flexural test indicated that flexural strengths of both the VE casts and the composites decreased by hygrothermal aging with a trend related to their moisture absorption behaviors, while flexural modulus of the composites was less affected. The ILSS of the CF/VE composites was also depressed by deterioration in interfacial adhesion, which was proved by the interfacial adhesion parameters, A and α. POLYM. COMPOS., 2009. © 2009 Society of Plastics Engineers  相似文献   

18.
Static test methods were used to evaluate and compare the thermal and mechanical properties of several glass/thermoset laminated composites between 25° and 400°C. The unidirectional matrix composites consisted of phenolic-modified epoxy, epoxy novolac, epoxy, and modified phenolic resins. These materials were selected as potential alternative materials for rotary compressor vanes. Dynamic mechanical analysis (DMA), thermomechanical analysis (TMA), and thermogravimetric analysis (TGA) techniques were selected to evaluate elevated temperature performance. The short-beam shear test was chosen to measure interlaminar shear properties. The results indicated that an elevated-temperature matrix, such as the modified phenolic resin, may not result in optimum composite strengths. Instead, an epoxy resin reinforced with glass fibers provides a better balance between elevated-temperature performance and interlaminar shear strength. The test results of this study, in addition to being adequate for discriminating the materials for initial selection purposes, were obtained quickly and easily. Moreover, the thermal results provide a more realistic understanding of composite elevated-temperature characteristic than do those of the present standard test.  相似文献   

19.
Challenges for wood‐thermoplastic composites to be utilized in structural applications are to lower product weight and to improve the long‐term load performance. Silane crosslinking of the composites is one way to reduce the creep during long‐term loading and to improve the mechanical properties. In this study, silane crosslinked wood‐polyethylene composites were produced by reactive extrusion and subsequently manufactured into rectangular profiles. The silane crosslinked composites were stored in a sauna at 90 °C to increase the degree of crosslinking. The toughness of the silane crosslinked composites was significantly higher than for the non‐crosslinked composites. Improved adhesion between the wood and polyethylene phases is most likely the reason for the improved toughness of the crosslinked composites. There was no significant difference in flexural modulus between the crosslinked and non‐crosslinked composites. In addition, impact testing showed that the impact strength of the crosslinked composites was considerable higher (at least double) than the non‐crosslinked. The effect of temperature on the impact strength of the composites indicated slightly higher impact strength at −30 °C than at 0° and at 25 °C, and then an incrase in impact strength at 60 °C. Crosslinking also reduced the creep response during short‐term loading. Moreover, scanning electron microscopy on the fracture surface of the crosslinked composites revealed good adhesion between the polyethylene and wood phases. POLYM. COMPOS. 27:184–194, 2006. © 2006 Society of Plastics Engineers  相似文献   

20.
The chemically modified oil palm ash (OPA) with the cetyltrimethylammonium bromide (CTAB) solution was prepared prior to compounding with the natural rubber and other curing ingredients. The aging resistance and thermal stability of CTAB-modified OPA-filled natural rubber composites were evaluated in the same manner as non-modified OPA samples. The retention tensile properties after thermal aging was measured and based on the result shown, the CTAB-modified OPA-filled natural rubber composites imparted insignificant effect to aging resistance as compared to the non-modified OPA-filled natural rubber composites at very low OPA loading; however, the effect became apparent beyond 3 phr OPA loading where the CTAB-modified OPA-filled natural rubber composites provided better aging resistance than the corresponding non-modified OPA-filled natural rubber composites. The thermogravimetric analysis indicated that the CTAB-modified OPA-filled natural rubber composites exhibited lower thermal stability which showed lower temperature at their respective weight loss and lesser char residue than that of non-modified OPA-filled natural rubber composites. This was attributed to the CTAB which started to decompose at the temperature of 210 °C. However, for the range from ambient temperature to 210 °C, the CTAB-modified OPA-filled natural rubber composites produce better thermal stability than those of non-modified OPA-filled natural rubber composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号