首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crosslinked poly(acryloylmorpholine) and its copolymers poly(acryloyl morpholine‐co‐acrylic acid) and poly(acryloylmorpholine‐co‐2‐acrylamide‐2‐methyl‐1‐propane sulfonic acid) were synthesized by radical polymerization. The resins were completely insoluble in water and were characterized with Fourier transform infrared spectroscopy and thermal analysis. The metal ions Ag(I), Cu(II), Cd(II), Hg(II), Zn(II), Pb(II), Al(III), and Cr(III) were investigated under competitive and noncompetitive conditions by a batch equilibrium procedure. The resin‐metal‐ion equilibrium was achieved before 5 min. The recovery of the resin was investigated at 20°C with different concentrations of HNO3 and HClO4. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3266–3274, 2006  相似文献   

2.
Crosslinked poly(acrylic acid), PAA, and poly(2‐acrylamidoglycolic acid), PAAG, were synthesized by radical polymerization. Both resins contain carboxylic acid groups. PAA at basic pH exists basically as an acrylate anion and PAAG shows three atoms or groups, carboxylic acid, hydroxyl, and amide groups, that can act as ion exchanger or chelating groups. Both resins are studied as adsorbents to trace metal ions from saline aqueous solutions and natural sea water and their properties by Batch equilibrium procedure are compared. The metal ions studied under competitive and noncompetitive conditions were Cu(II), Pb(II), Cd(II), and Ni(II). The effects of pH, time of contact, amount of resin, temperature, and salinity were studied. Resin PAA shows a high affinity (>80%) for Cu(II) and Cd(II) and resin PAAG shows also a high affinity for Ni(II), Pb(II), and Cd(II). By treatment of the metal ion‐loaded resin with 4M HNO3 it is possible to recover completely the Cu(II) ions from resin PAA and Ni(II) and Pb(II) from resin PAAG. The metal ion retention properties were studied with natural sea water. For those natural sea waters containing Cu(II) and Cd(II), the resins showed a high affinity for Cd(II) ions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 697–705, 2006  相似文献   

3.
The crosslinked poly[3‐(methacryloylamino)propyl]dimethyl(3‐sulfopropyl)ammonium hydroxide], P(MAPDSA), and poly[3‐(methacryloylamino)propyl]dimethyl(3‐sulfopropyl)ammonium hydroxide‐co‐acrylic acid], P(MAPDSA‐co‐AA), were synthesized by radical polymerization. The resins were completely insoluble in water. Due to the lower metal ion retention of P(MAPDSA), the metal ions investigated under competitive and noncompetitive conditions for Cu(II), Cd(II), Hg(II), Zn(II), Pb(II), and Cr(III) ions by batch and column equilibrium procedures were carried out only for P(MAPDA‐co‐AA), particularly for Hg(II). The resin–Hg(II) ion equilibrium was achieved before 15 min. The resin showed a maximum retention capacity value for Hg(II) at pH 2 of 1.89 meq/g. The resin showed a high selectivity to Hg(II) ions. The recovery of the resin was investigated at 25°C with different concentrations of HNO3 and HClO4. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 525–530, 2005  相似文献   

4.
Completely water‐insoluble resins containing amine, carboxylic acid, and sulfonic acid as ligand groups were synthesized by radical polymerization in solution. The yield was higher than 97%. The resins were characterized by FTIR spectroscopy and thermal analysis. The metal ion retention properties at different pH values were investigated by a batch method. Metal ions studied were: Cu(II), Cd(II), Zn(II), Hg(II), Pb(II), and Cr(III). The metal ion binding ability depended strongly on the pH. The retention properties were also tested under competitive conditions. Elution of the metal ion was investigated in acid medium at different concentrations. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 700–705, 2003  相似文献   

5.
A water‐insoluble polymer, poly(sodium 4‐styrene sulfonate), was synthesized by radical polymerization at different amounts (2, 4, 6, and 8 mol %) of crosslinking reagent (CR). At the lowest CR level (2 mol %), only a water‐soluble polymer is obtained, and consequently it could not be studied as resin. The polymerization yield ranged from 82.6 to 91.6%. The resin is characterized by FTIR spectroscopy, thermal analysis, and scanning electron microscopy. The metal ion affinity is studied for the cations: Hg(II), Cd(II), Zn(II), Pb(II), Cr(III), and Al(III) with a batch equilibrium procedure under different experimental conditions. The metal ion affinity increased as the pH increased. At pH 5, the resin showed an affinity greater than 97% for all metal ions. Hg(II) showed the highest retention value at pH 2. The maximum retention capacity is determined at optimum pH for Hg(II), Cd(II), Pb(II), and Zn(II). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4328–4333, 2006  相似文献   

6.
The crosslinked poly(1‐vinylimidazole‐co‐acrylic acid), P(VIm‐co‐AA), and poly(1‐vinylimidazole‐co‐2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid) P(VIm‐co‐APSA) were synthesized by radical polymerization and tested as adsorbents under competitive and noncompetitive conditions for Cu(II), Cd(II), Hg(II), Zn(II), Pb(II), and Cr(III) by batch equilibrium procedure. The resin–metal ion equilibrium was achieved before 1 h. The resin P(VIm‐co‐AA) showed a maximum retention capacity (MRC) value for Pb(II) at pH 3 and Hg(II) at pH 1 of 1.1 and 1.2 mEq/g, respectively, and the resin P(VIm‐co‐AA) showed at pH 3 the following MRC values: Hg(II) (1.5 mEq/g), Cd(II) (1.9 mEq/g), Zn(II) (2.7 mEq/g), and Cr(III) (2.8 mEq/g). The recovery of the resin was investigated at 25°C with 1 M and 4 M HNO3 and 1 M and 4 M HClO4. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2852–2856, 2003  相似文献   

7.
Bombyx mori silk, Antheraea pernyi silk, and wool fibers were chemically modified by treatment with tannic acid (TA) or by acylation with ethylenediaminetetraacetic (EDTA) dianhydride. Kinetics of TA loading or acylation with EDTA‐dianhydride varied from fiber to fiber. B. mori silk and wool displayed the highest weight gains with TA and EDTA‐dianhydride, respectively. The uptake of different metal ions (Ag+, Cu2+, Co2+) by protein fibers, either untreated or chemically modified, was studied as a function of weight gain and pH of the aqueous metal solution. Below pH 7, absorption of metal ions by untreated and TA‐treated fibers was negligible. Acylation with EDTA‐dianhydride enabled protein fibers to absorb and bind significant amounts of metal ions in the acidic and neutral pH range. The levels of metal desorption at acidic pH depended on the fiber‐metal combination. Untreated protein fibers usually displayed the lowest stability of the metal complex. Metal complexes with protein fibers exhibited prominent antimicrobial activity against the plant pathogen Cornebacterium. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 638–644, 2003  相似文献   

8.
A novel water‐soluble colored polymer, based on 1,8‐naphthalimide, was synthesized through a series of easy reactions with high yields. It emitted green fluorescence both in an aqueous solution and in a solid state. Fluorescence characteristics of the polymer as a function of pH were investigated in aqueous solutions. The polymer solution showed weaker fluorescence in a more acidic medium. When the pH of the solution was higher than 5, stronger fluorescence could be seen with a pKa value of 3.5. The presence of metal cations (Mn2+, Fe3+, Co2+, Ni2+, Cu2+, and Zn2+) could quench the fluorescence intensity of an aqueous solution of this polymer to different levels. It was highly sensitive to Cu2+ and Fe3+ present in the studied system. The results suggest that this newly synthesized compound could work as a polymeric sensor responding to water polluted by Cu2+, Fe3+, and protons. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
This article reports the synthesis of poly(N‐maleoylglycine‐co‐itaconic acid) by radical copolymerization under different feed mole ratios and its properties to remove various metal ions, such as Cu(II), Cr(III), Co(II), Zn(II), Ni(II), Pb(II), Cd(II), and Fe(III), in aqueous phase with the liquid‐phase polymer‐based retention(LPR) technique. The interactions of inorganic ions with the hydrophilic water‐soluble polymer were determined as a function of pH and filtration factor. Metal ion retention was found to strongly depend on the pH. Metal ion retention increased as pH and MG content units in the macromolecular backbone increased. The copolymers were characterized by elemental analysis, FTIR, 1H‐NMR, and 13C‐NMR spectroscopy. Additionally, intrinsic viscosity, molecular weight, and polydispersity have been determined for the copolymers. Copolymer and polymer–metal complex thermal behavior was studied using differential scanning calorimetry (DSC) and thermogravimetry (TG) techniques under nitrogen atmosphere. The thermal decomposition temperatures (TDT) were influenced by the copolymer composition. The copolymers present lower TDT than the polymer–metal complex with the same copolymer composition. All copolymers present a single Tg, indicating the formation of random copolymers. A slight deviation of the Tg for the copolymers and its complexes can be observed. The copolymer Tg is higher than the Tg value for the polymer–metal complexes. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

10.
Starch‐g‐poly(acrylic acid) and poly[(acrylic acid)‐co‐acrylamide] synthesized via chemically crosslinking polymerization were then each mixed with inorganic coagulants of aluminum sulfate hydrate [Al2(SO4)3·18H2O], calcium hydroxide [Ca(OH)2], and ferric sulfate [Fe2(SO4)3] in a proper ratio to form complex polymeric flocculants (CPFs). All CPFs exhibited low water absorbency than those of the uncomplexed superabsorbent copolymers. The color reduction by the CPFs was tested with both synthetic wastewater and selected wastewater samples from textile industries. The synthetic wastewater was prepared from a direct dye in a concentration of 50 mg dm?3 at pH 7. The CPFs of poly[(acrylic acid)‐co‐acrylamide] with calcium hydroxide at a ratio of 1:2 is the most effective CPF for the wastewater color reduction. The CPF concentration of 500 mg dm?3 could reduce the color of the synthetic wastewater containing the direct dye solution by 95.4% and that of the industrial wastewater by 76%. Starch‐g‐poly(acrylic acid)/Ca(OH)2 CPF can reduce the synthetic direct dye and the industrial wastewater by 74% and 18%, respectively. Chemical oxygen demand, residual metal ion concentrations, pHs, turbidity of the wastewater were also investigated and the potential use of the complex polymer flocculants for textile wastewater treatment was indicated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2915–2928, 2006  相似文献   

11.
12.
8‐Hydroxy‐4‐azoquinolinephenylmethacrylate (8H4AQPMA) was prepared and polymerized in ethyl methyl ketone (EMK) at 65°C using benzoyl peroxide as free radical initiator. Poly(8‐hydroxy‐4‐azoquinolinephenylmethacrylate) poly(8H4AQPMA) was characterized by infrared and nuclear magnetic resonance techniques. The molecular weight of the polymer was determined by gel permeation chromatography. Cu(II) and Ni(II) complexes of poly(8H4AQPMA) were prepared. Elemental analysis of polychelates suggests that the metal‐ligand ratio is about 1 : 2. The polychelates were further characterized by infrared spectra, X‐ray diffraction, spectral studies, and magnetic moments. Thermal analyses of the polymer and polychelates were carried out in air. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1516–1522, 2006  相似文献   

13.
The properties of water‐soluble metal–polymers to retain As(III) from aqueous solution are investigated. Poly(acrylic acid)s with different tin contents are prepared. Amounts of 3, 5, 10, and 20 wt % of tin are added to the polymer. The metal compositions are evaluated by thermogravimetry (TG‐DSC) and atomic absorption spectroscopy. Structural properties are analyzed by infrared and 1H nuclear magnetic resonance spectroscopy, and X‐ray diffraction. Additionally, specific surface area was measured using CO2 as adsorbate. Arsenic retention properties are studied using the liquid‐phase polymer‐based retention (LPR) technique. The polymers can bind arsenic species from an aqueous solution in the pH range 4–8. The studies show that the retention capacity is a function of tin content and polymer concentration. At pH 8, the following mol ratios poly(AA)‐Sn : As(III) are analyzed: 600 : 1, 400 : 1, 200 : 1, 100 : 1, and 20 : 1. The highest retention, 80%, is obtained with poly(AA)‐Sn at 10 and 20 wt % of tin at mole ratios 400 : 1, and at nearly to 20 : 1 or 40 : 1 Sn‐As(III). The highest retention is observed at pH 8 and 4. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

14.
Two macroporous acrylonitrile/10% vinyl acetate/10% divinylbenzene copolymers as beads were obtained by the aqueous suspension copolymerization of the three comonomers in the presence of toluene as a diluent, which was used in two different amounts. These copolymers were chemically modified by their reactions with ethylenediamine, diethylenetriamine, and triethylenetetramine in the presence of water when the aminolysis–hydrolysis reaction of the nitrile groups and the hydrolysis reaction of the acetate groups occurred. From these reactions, weak‐base anion exchangers with high ion‐exchange capacities, between 1.6 and 2.2 mequiv/mL and 6.5 and 10.5 mequiv/g, were obtained. For these anion exchangers, the behaviors in the retention processes of the Ni(II), Cd(II), and Pb(II) cations were evaluated with the bath method. All the resins exhibited retention properties, but the retained amounts of the metal cations differed as a function of the resin and cation nature. Thus, the resin from the reaction with triethylenetetramine of the copolymer obtained in the presence of a larger amount of toluene could be considered the most suitable sorbent for the three metal cations, especially for Ni(II). Its maximum retention capacity for this cation was 2.67 mequiv/g of dried resin. From the noncompetitive and competitive retentions was observed the following selectivity order: Ni(II) > Cd(II) > Pb(II). The retention took place by the chelating processes between the functional groups with the ligand role, especially free amine groups, and metal cations. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 930–938, 2005  相似文献   

15.
Photo‐polymerization behaviors of bisphenol‐A epoxy diacrylate (EPA) and six kinds of EPA‐derived resins containing different amounts of carboxylic acid, urethane, amide, and imide groups were studied by a photo differential scanning calorimetry. The dark polymerization was performed and pseudo‐steady state assumption of growing radicals was made to obtain the kinetic constants for propagation, bimolecular termination, monomolecular termination, and the concentration of growing radicals of different resins as a function of extent of reaction. Compared with EPA, it was found that the rate of polymerization and kinetic constants of the six resins were relatively small because the mobility of reacting species in resins was restricted by carboxylic acid, urethane, amide, and imide groups. Finally, three different photo‐initiators were used to initiate the polymerization, and their kinetic behaviors were compared. The effect of tertiary amine group of photo‐initiator on the rate of polymerization of resins having carboxylic acid group and the initiator efficiency were discussed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Two resins were synthesized by radical polymerization using N,N′‐methylene‐bis‐acrylamide and ammonium persulfate as the crosslinking reagent and initiator, respectively. The yields were 98%. The resins were characterized by FTIR and UV‐Vis spectroscopy. Sorption behavior of resins toward Hg(II), Cd(II), Zn(II), Pb(II), and Cr(III) ions was studied at different pHs depending on the metal ion. Both resins showed selective sorption to Hg(II) ions at pH 2 from a mixture of all ions.The elution of Hg(II) bound to the resins was also investigated using perchloric acid at different concentrations. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1251–1256, 2002; DOI 10.1002/app.10455  相似文献   

17.
Poly(4‐acryloylmorpholine), poly(4‐acryloylmorpholine‐co‐2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid), and poly(2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid) were synthesized by radical polymerization. The water‐soluble polymers obtained, containing tertiary amino, amide, and sulfonic acid groups, were investigated, in view of their metal binding properties, as polychelatogens by using the liquid‐phase polymer‐based retention technique, under different experimental conditions. The metal ions investigated were Ag(I), Cu(II), Co(II), Ni(II), Cd(II), Pb(II), Zn(II), Cr(III), and Al(III). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 180–185, 2006  相似文献   

18.
The free‐radical copolymerization of water‐soluble poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) was carried out with a feed monomer ratio of 75:25 mol %, and the total monomer concentration was 2.67M. The synthesis of the copolymer was carried out in dioxane at 70°C with benzoyl peroxide as the initiator. The copolymer composition was obtained with elemental analysis and 1H‐NMR spectroscopy. The water‐soluble polymer was characterized with elemental analysis, Fourier transform infrared, 1H‐ and 13C‐NMR spectroscopy, and thermal analysis. Additionally, viscosimetric measurements of the copolymer were performed. The thermal behavior of the copolymer and its complexes were investigated with differential scanning calorimetry (DSC) and thermogravimetry techniques under a nitrogen atmosphere. The copolymer showed high thermal stability and a glass transition in the DSC curves. The separation of various metal ions by the water‐soluble poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) reagent in the aqueous phase with liquid‐phase polymer‐based retention was investigated. The method was based on the retention of inorganic ions by this polymer in a membrane filtration cell and subsequent separation of low‐molar‐mass species from the polymer/metal‐ion complex formed. Poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) could bind metal ions such as Cr(III), Co(II), Zn(II), Ni(II), Cu(II), Cd(II), and Fe(III) in aqueous solutions at pHs 3, 5, and 7. The retention percentage for all the metal ions in the polymer was increased at pH 7, at which the maximum retention capacity could be observed. The interaction of inorganic ions with the hydrophilic polymer was determined as a function of the pH and filtration factor. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 178–185, 2006  相似文献   

19.
A novel quaternary amine methacrylate monomer (QAMA) was synthesized by amination of dimethacrylate with piperazine followed by its quaternization using an alkyl iodide. Copolymerization of QAMA with 2‐hydroxyethyl methacrylate was carried out by free radical bulk polymerization technique at room temperature using ammonium persulfate and N,N,N′,N′‐tetramethyl ethylenediamine as a redox initiator. The monomer as well as copolymers was characterized by FTIR and 1H NMR spectral studies. Thermal and physical characteristics of copolymers of varying compositions of QAMA were evaluated by thermogravimetric analysis, differential calorimetry, contact angle and scanning electron microscopy. The antibacterial activity of the synthesized quaternary amine dimethacrylate copolymers against Escherichia coli and Staphylococcus aureus was studied by zone of inhibition and colony count method. QAMA copolymers showed broad‐spectrum contact killing antibacterial properties without releasing any active agent as checked by iodide‐selective ion meter. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1038–1044, 2006  相似文献   

20.
A water‐soluble polymer containing phosphonic acid groups was investigated as a polychelatogen by using the liquid‐phase polymer‐based retention technique (LPR) under different experimental conditions. The maximum retention capacity of this polymer was determined at different pHs and polymer–metal ion ratios. The metal ions investigated were Ag(I), Cu(II), Co(II), Ni(II), and Cr(III). The maximum retention capacity values of the divalent metal ions were very similar and higher than those for the trivalent cations, indicating that the polymer–metal ion interaction was basically through electrostatic type. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2917–2922, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号