首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Crosslinked poly(acryloylmorpholine) and its copolymers poly(acryloyl morpholine‐co‐acrylic acid) and poly(acryloylmorpholine‐co‐2‐acrylamide‐2‐methyl‐1‐propane sulfonic acid) were synthesized by radical polymerization. The resins were completely insoluble in water and were characterized with Fourier transform infrared spectroscopy and thermal analysis. The metal ions Ag(I), Cu(II), Cd(II), Hg(II), Zn(II), Pb(II), Al(III), and Cr(III) were investigated under competitive and noncompetitive conditions by a batch equilibrium procedure. The resin‐metal‐ion equilibrium was achieved before 5 min. The recovery of the resin was investigated at 20°C with different concentrations of HNO3 and HClO4. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3266–3274, 2006  相似文献   

2.
    
8‐Hydroxy‐4‐azoquinolinephenylmethacrylate (8H4AQPMA) was prepared and polymerized in ethyl methyl ketone (EMK) at 65°C using benzoyl peroxide as free radical initiator. Poly(8‐hydroxy‐4‐azoquinolinephenylmethacrylate) poly(8H4AQPMA) was characterized by infrared and nuclear magnetic resonance techniques. The molecular weight of the polymer was determined by gel permeation chromatography. Cu(II) and Ni(II) complexes of poly(8H4AQPMA) were prepared. Elemental analysis of polychelates suggests that the metal‐ligand ratio is about 1 : 2. The polychelates were further characterized by infrared spectra, X‐ray diffraction, spectral studies, and magnetic moments. Thermal analyses of the polymer and polychelates were carried out in air. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1516–1522, 2006  相似文献   

3.
    
Two resins were synthesized by radical polymerization using N,N′‐methylene‐bis‐acrylamide and ammonium persulfate as the crosslinking reagent and initiator, respectively. The yields were 98%. The resins were characterized by FTIR and UV‐Vis spectroscopy. Sorption behavior of resins toward Hg(II), Cd(II), Zn(II), Pb(II), and Cr(III) ions was studied at different pHs depending on the metal ion. Both resins showed selective sorption to Hg(II) ions at pH 2 from a mixture of all ions.The elution of Hg(II) bound to the resins was also investigated using perchloric acid at different concentrations. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1251–1256, 2002; DOI 10.1002/app.10455  相似文献   

4.
    
Polypropylene (PP) was modified by radical grafting of acrylic acid (AA) in the melt by using dicumyl peroxide (DCP) as initiator. To reach a high grafting degree (GD) without substantially modifying PP‐chain structure, a few runs were carried out by employing butyl 3‐(2‐furanyl)propenoate (BFA), which is a coagent able to preserve the molecular weight (MW) of PP macromolecules in the presence of radical grafting reagents. All the samples were extracted with selective solvents to remove unreacted chemicals and free poly(acrylic acid) (PAA), and the GD was accurately determined by using the FTIR methodology. The GD ranged from 1.51 to 4.67 mol %. High‐temperature size permeation chromatography analysis was used to evaluate MW behavior, confirming the control exerted by the presence of BFA on the degradation reactions. DSC, TGA, and SEM analyses were performed to analyze the chemical modification effects on the polymer products' thermal and morphological properties. Finally, selected samples, with a particle size distribution in the range 100–850 μm, were tested as metal ion adsorption resins. Al(III), Cr(III), Zn(II), Cd(II), Pb(II), and Hg(II) were studied, and the highest adsorption efficiency values (in percentage) were obtained for Al(III) (15–20%) and Hg(II) (25–30%). © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
    
Starch‐g‐poly(acrylic acid) and poly[(acrylic acid)‐co‐acrylamide] synthesized via chemically crosslinking polymerization were then each mixed with inorganic coagulants of aluminum sulfate hydrate [Al2(SO4)3·18H2O], calcium hydroxide [Ca(OH)2], and ferric sulfate [Fe2(SO4)3] in a proper ratio to form complex polymeric flocculants (CPFs). All CPFs exhibited low water absorbency than those of the uncomplexed superabsorbent copolymers. The color reduction by the CPFs was tested with both synthetic wastewater and selected wastewater samples from textile industries. The synthetic wastewater was prepared from a direct dye in a concentration of 50 mg dm?3 at pH 7. The CPFs of poly[(acrylic acid)‐co‐acrylamide] with calcium hydroxide at a ratio of 1:2 is the most effective CPF for the wastewater color reduction. The CPF concentration of 500 mg dm?3 could reduce the color of the synthetic wastewater containing the direct dye solution by 95.4% and that of the industrial wastewater by 76%. Starch‐g‐poly(acrylic acid)/Ca(OH)2 CPF can reduce the synthetic direct dye and the industrial wastewater by 74% and 18%, respectively. Chemical oxygen demand, residual metal ion concentrations, pHs, turbidity of the wastewater were also investigated and the potential use of the complex polymer flocculants for textile wastewater treatment was indicated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2915–2928, 2006  相似文献   

6.
    
Two macroporous acrylonitrile/10% vinyl acetate/10% divinylbenzene copolymers as beads were obtained by the aqueous suspension copolymerization of the three comonomers in the presence of toluene as a diluent, which was used in two different amounts. These copolymers were chemically modified by their reactions with ethylenediamine, diethylenetriamine, and triethylenetetramine in the presence of water when the aminolysis–hydrolysis reaction of the nitrile groups and the hydrolysis reaction of the acetate groups occurred. From these reactions, weak‐base anion exchangers with high ion‐exchange capacities, between 1.6 and 2.2 mequiv/mL and 6.5 and 10.5 mequiv/g, were obtained. For these anion exchangers, the behaviors in the retention processes of the Ni(II), Cd(II), and Pb(II) cations were evaluated with the bath method. All the resins exhibited retention properties, but the retained amounts of the metal cations differed as a function of the resin and cation nature. Thus, the resin from the reaction with triethylenetetramine of the copolymer obtained in the presence of a larger amount of toluene could be considered the most suitable sorbent for the three metal cations, especially for Ni(II). Its maximum retention capacity for this cation was 2.67 mequiv/g of dried resin. From the noncompetitive and competitive retentions was observed the following selectivity order: Ni(II) > Cd(II) > Pb(II). The retention took place by the chelating processes between the functional groups with the ligand role, especially free amine groups, and metal cations. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 930–938, 2005  相似文献   

7.
    
The crosslinked poly(1‐vinylimidazole‐co‐acrylic acid), P(VIm‐co‐AA), and poly(1‐vinylimidazole‐co‐2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid) P(VIm‐co‐APSA) were synthesized by radical polymerization and tested as adsorbents under competitive and noncompetitive conditions for Cu(II), Cd(II), Hg(II), Zn(II), Pb(II), and Cr(III) by batch equilibrium procedure. The resin–metal ion equilibrium was achieved before 1 h. The resin P(VIm‐co‐AA) showed a maximum retention capacity (MRC) value for Pb(II) at pH 3 and Hg(II) at pH 1 of 1.1 and 1.2 mEq/g, respectively, and the resin P(VIm‐co‐AA) showed at pH 3 the following MRC values: Hg(II) (1.5 mEq/g), Cd(II) (1.9 mEq/g), Zn(II) (2.7 mEq/g), and Cr(III) (2.8 mEq/g). The recovery of the resin was investigated at 25°C with 1 M and 4 M HNO3 and 1 M and 4 M HClO4. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2852–2856, 2003  相似文献   

8.
    
Poly(8‐hydroxy‐4‐azoquinolinephenol‐formaldehyde) resin (8H4AQPF) was prepared by condensing 8‐hydroxy 4‐azoquinoline phenol with formaldehyde (1 : 1 mol ratio) in the presence of oxalic acid. Polychelates were obtained when the DMF solution of poly(8H4AQPF) containing a few drops of ammonia was treated with the aqueous solution of Cu(II) and Ni(II) ions. The polymeric resin and polymer–metal complexes were characterized with elemental analysis and spectral studies. The elemental analysis of the polymer–metal complexes suggested that the metal‐to‐ligand ratio was 1 : 2. The IR spectral data of the polychelates indicated that the metals were coordinated through the nitrogen and oxygen of the phenolic ? OH group. Diffuse reflectance spectra, electron paramagnetic resonance, and magnetic moment studies revealed that the polymer–metal complexes of the Cu(II) complexes were square planar and those of the Ni(II) complexes were octahedral. X‐ray diffraction studies revealed that the polymer metal complexes were crystalline. The thermal properties of the polymer and polymer–metal complexes were also examined. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1506–1510, 2006  相似文献   

9.
    
Glycidyl methacrylate–based resin crosslinked beads with acetamide functions were demonstrated to be efficient in the removal of mercury. Beaded polymer supports were prepared by suspension polymerization of glycidyl methacrylate (0.9 mol) and ethylene glycol dimethacrylate (0.1 mol). The resulting copolymer beads were modified through epoxy functions in two steps: (1) by treatment with excess dibutyl amine and (2) by subsequent reaction with chloroacetamide. The resulting polymer resin, which had a chloroacetamide content of 2.5 mmol/g, was effective in extracting mercury from aqueous solutions. The mercury sorption capacity was around 2.2 mmol/g in nonbuffered conditions. Experiments performed in identical conditions with several metal ions revealed that Cd(II), Pb(II), Zn(II), and Fe(III) ions also were extractable in low quantities (0.2–0.8 mmol/g). The sorbed mercury could be eluted by repeated treatment with hot acetic acid without hydrolysis of the amide groups. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 348–352, 2006  相似文献   

10.
    
Two novel chelating resins are prepared by anchoring diethylenetriamine bis‐ and mono‐furaldehyde Schiff bases onto the macroporous GMA‐DVB copolymer beads and utilized for the adsorption towards Cu(II), Co(II), Ni(II), and Zn(II). FTIR spectra show that Schiff base groups have been successfully introduced into the polymer matrix and the chelating resins can form complexes with the metal ions. The chelating resins show a higher adsorption capacity toward Cu(II). The conductivity method can be used for determining the adsorption kinetics of the resins towards metal ions. The results show that the adsorption rates towards Cu(II) are much higher than those towards other ions and pseudo second‐order and intraparticle diffusion models can be applied to treat the adsorption amount‐time data. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
    
Using the batch method, the retention of Ga(III) from HCl solutions by two gel‐type pyridine strong‐base anion exchangers containing 1‐methyl‐ or 1‐butyl‐4‐vinylpyridinium chloride structural units, called S1 and S2 resins, respectively, was studied. The influence of the HCl and Ga(III) concentrations as well as of the contact time between the resin and the liquid phase was investigated. The parameters, which characterize the retention process, were estimated using Langmuir and Freundlich isotherms. Both resins exhibited a higher affinity for gallium ions from a 6M HCl solution. According to Langmuir isotherms, maximum retention capacities of 44.44 and 60 mg Ga(III)/g dry resin for the S1 and S2 resins, respectively, were obtained. Freundlich isotherms provide additional proof for a higher affinity of the S2 resin for Ga(III) from HCl solutions. It is clear that the substituent length increase on N+ atoms led to an increasing affinity of the pyridine strong base anion exchangers toward Ga(III). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3440–3444, 2002  相似文献   

12.
    
The crosslinked poly[3‐(methacryloylamino)propyl]dimethyl(3‐sulfopropyl)ammonium hydroxide], P(MAPDSA), and poly[3‐(methacryloylamino)propyl]dimethyl(3‐sulfopropyl)ammonium hydroxide‐co‐acrylic acid], P(MAPDSA‐co‐AA), were synthesized by radical polymerization. The resins were completely insoluble in water. Due to the lower metal ion retention of P(MAPDSA), the metal ions investigated under competitive and noncompetitive conditions for Cu(II), Cd(II), Hg(II), Zn(II), Pb(II), and Cr(III) ions by batch and column equilibrium procedures were carried out only for P(MAPDA‐co‐AA), particularly for Hg(II). The resin–Hg(II) ion equilibrium was achieved before 15 min. The resin showed a maximum retention capacity value for Hg(II) at pH 2 of 1.89 meq/g. The resin showed a high selectivity to Hg(II) ions. The recovery of the resin was investigated at 25°C with different concentrations of HNO3 and HClO4. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 525–530, 2005  相似文献   

13.
    
Crosslinked poly(acrylic acid), PAA, and poly(2‐acrylamidoglycolic acid), PAAG, were synthesized by radical polymerization. Both resins contain carboxylic acid groups. PAA at basic pH exists basically as an acrylate anion and PAAG shows three atoms or groups, carboxylic acid, hydroxyl, and amide groups, that can act as ion exchanger or chelating groups. Both resins are studied as adsorbents to trace metal ions from saline aqueous solutions and natural sea water and their properties by Batch equilibrium procedure are compared. The metal ions studied under competitive and noncompetitive conditions were Cu(II), Pb(II), Cd(II), and Ni(II). The effects of pH, time of contact, amount of resin, temperature, and salinity were studied. Resin PAA shows a high affinity (>80%) for Cu(II) and Cd(II) and resin PAAG shows also a high affinity for Ni(II), Pb(II), and Cd(II). By treatment of the metal ion‐loaded resin with 4M HNO3 it is possible to recover completely the Cu(II) ions from resin PAA and Ni(II) and Pb(II) from resin PAAG. The metal ion retention properties were studied with natural sea water. For those natural sea waters containing Cu(II) and Cd(II), the resins showed a high affinity for Cd(II) ions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 697–705, 2006  相似文献   

14.
    
Completely water‐insoluble resins containing amine, carboxylic acid, and sulfonic acid as ligand groups were synthesized by radical polymerization in solution. The yield was higher than 97%. The resins were characterized by FTIR spectroscopy and thermal analysis. The metal ion retention properties at different pH values were investigated by a batch method. Metal ions studied were: Cu(II), Cd(II), Zn(II), Hg(II), Pb(II), and Cr(III). The metal ion binding ability depended strongly on the pH. The retention properties were also tested under competitive conditions. Elution of the metal ion was investigated in acid medium at different concentrations. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 700–705, 2003  相似文献   

15.
    
The polymeric metal complexes of poly (3‐hydroxy‐4‐((Z)‐1‐(phenylimino)ethyl)phenyl‐3‐methylbut‐2‐enoate) designated as [poly(3H4‐1PEPMB)] and poly (3‐hydroxy‐4‐((Z)‐phenyl(phenylimino)methyl)phenyl‐3‐methylbut‐2‐enoate designated as [poly(3H4‐PPMPMB)] containing Cu(II), Ni(II), Co(II), Cd(II), Mn(II), Ca(II), and Zn(II) ions were synthesized. The ploymer ligands and metal complexes were charcterized by Fourier transform infrared, nuclear magnetic resonance (NMR), thermogravimetric analysis, differential scanning calorimeter (DSC), and X‐ray diffraction (XRD) techniques. The XRD study of the complexes revealed highly crystalline nature of polychelates. The polymeric complexes were active for the oxidation of aldehyde group. The oxidation activity of Cu (II) complex of poly (3H4‐1PEPMB) was studied for the oxidation of benzaldehyde and its derivaties to corresponding carboxylic acids. The oxidation products were confirmed by GC‐MS analysis. The oxidation of aldehydes was quantitative with 100% selectivity for benzioc acid. Thermal analysis of complexes indicated reasonably good thermal stability. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
    
Crosslinked acrylate resin were prepared by the radical polymerization of poly(ethylene glycol) diacrylate (ADE400) with 2,2′‐azobisisobutyronitrile in the presence of cobalt (II) chloride at 100°C for 48 h. Metallization behavior of the CoCl2‐containing acrylate resin by reduction with aqueous sodium tetrahydroborate solution at 25°C was investigated by means of infrared spectroscopy, X‐ray photoelectron spectroscopy, scanning electron microscopy, and electron probe microanalysis. As a result, the surface of the crosslinked acrylate resin was successfully metallized by the reduction, and the cobalt layer generated at the side of a polypropylene plate used in the preparation of film was thicker and smoother than the air side. Most of the chlorine ion in the film passed in the reduction solution. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3864–3868, 2004  相似文献   

17.
    
Crosslinked poly(2‐acrylamido glycolic acid) resin was synthesized by radical polymerization. This resin contains three potential ligand groups and was studied as an adsorbent of trace heavy metal ions from a saline aqueous solution and sea water by using the Batch equilibrium procedure. Adsorption characteristics of the resin toward Cu(II), Ni(II), Cd(II), and Pb(II) were studied spectrophotometrically, both in competitive and noncompetitive conditions. The effect of pH, contact time, amount of sorbent, temperature, and salinity were studied. The resin showed a high affinity particularly for Ni(II). It was possible to remove completely Ni(II) and Pb(II) from the resin by 4M HNO3. The retention properties of the resin were also investigated for Cu(II) contained in natural sea waters. The retention behavior was similar to that of the synthetic metal ion aqueous solution. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2614–2621, 2003  相似文献   

18.
    
The crosslinked resins poly(4‐vinylpiridine) (PVPy) and poly(acrylic acid) (PAA) were obtained by radical polymerization. PVPy shows monodentate ligands and PAA at basic pH is basically as acrylate anion, which can contain end‐carboxylates groups or form a bridge acting as mono‐ or bidentate ligands. The retention properties for trace metal ions from saline aqueous solutions and natural seawaters of these two resins were investigated by Batch equilibrium procedure. The metal ions studied were Cu(II), Pb(II), Cd(II), and Ni(II). The following effects were studied: pH, contact time, amount of the adsorbent, temperature, and salinity. The resin PVPy showed a high affinity for Cd(II) and PAA for Cu(II) and Cd(II). The metal ions were determined in the filtrate by atomic absorption spectrometry. By the treatment of the loaded resin with 4M HNO3, it was possible to remove completely the Cu(II) ions. The retention properties of the resins were studied for trace metal ions present in the natural seawaters. Both resins showed a high affinity for Cd(II) when the natural seawater contained Cu(II) and Cd(II). © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2908–2916, 2004  相似文献   

19.
    
A series of monomers were prepared by reacting (meth)acryloyl chloride with 2,4‐dihydroxybenzophenone, 2,4‐dihydroxybenzaldehyde, and 2,4‐dihydroxyacetophenone, respectively. The monomers were polymerized in dimethylformamide (DMF) at 70°C using benzoyl peroxide as an initiator. Polymer–metal complexes were obtained from DMF solutions of polymers with an aqueous solution of metal ions. The polymers and polymer–metal complexes were characterized by elemental analysis and spectral studies. The IR spectra of these complexes suggest that the metals are coordinated through the oxygen of the carbonyl group and the oxygen of the phenolic–OH group. The electronic spectra, electron paramagnetic resonance (EPR) spectra, and magnetic moments of polychelates showed an octahedral and square planar structure for Ni(II) and Cu(II) complexes, respectively. X‐ray diffraction studies revealed that polychelates are highly crystalline. The thermal and electrical properties, catalytic activity, and structure–property relationships are discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2083–2090, 2003  相似文献   

20.
    
The possibility of ultrathin Nafion/expanded polytetrafluoroethylene (ePTFE) membranes used as proton‐exchange membranes (PEMs) for direct methanol fuel cells (DMFCs) was investigated in this study. Nafion/ePTFE membranes with a thickness of ~ 14 μm were promoted by self‐assembling Pd nanoparticles on the surface to reduce the methanol crossover. The loading of the Pd nanoparticles assembled on the membranes was 1.6–1.8 μg/cm2 and had little effect on the high conductivity of the Nafion membranes. With the self‐assembly of Pd nanoparticles, the methanol permeation noticeably decreased from 340 to 28 mA/cm2. As a result, the open‐ circuit voltage of the Nafion/ePTFE membranes that were self‐assembled for 48 h had a more significant increase from 0.55 to 0.73 V. The reduction of methanol crossover significantly increased the DMFC voltage‐current performance, and this means that self‐assembled Nafion/polytetrafluoroethylene PEMs have promise in DMFCs. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号