首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This is the first of a two‐part series investigating the degradation mechanisms of PBO fiber and approaches to alleviating degradation and improving fiber properties. Poly‐p‐phenylenebenzobisoxazole (PBO) fiber is a high strength and modulus fiber with remarkable thermal stability. Recent in‐service failures of this fiber have revealed that the fiber degrades rapidly in relatively mild environmental conditions of moisture and heat. In this work the mechanisms of degradation due to moisture, the presence of acid, and the effect of radiation from the UV–vis spectrum are investigated. It is found that exposure to moisture results in the loosening of the fiber morphology leading to an increase in the number and size of defects. The presence of aqueous acid causes both loosening of the fiber structure and hydrolysis of the oxazole ring structure. The effect of UV–vis radiation is primarily hydrolysis of the material near the fiber surface with attendant formation of amide linkages. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3517–3525, 2006  相似文献   

2.
We describe the synthesis of methane sulfonic acid (MeSA)‐doped poly(diphenylamine) (PDPA) with carboxylic groups containing multi‐walled carbon nanotubes (c‐MWNTs) via in situ polymerization. Diphenylamine monomers were adsorbed on to the surface of c‐MWNTs and polymerized to form PDPA/c‐MWNT composites. SEM and TEM images indicated two different types of materials: the thinner fibrous phase and the larger globular phase. The individual fibrous phase had a diameter around 100–130 nm, which should be the carbon nanotubes (diameter 20–30 nm) coated with a PDPA layer. The structure of PDPA/c‐MWNT composites was characterized by FTIR, UV‐visible spectroscopy and X‐ray diffraction patterns. The electrical conductivities of PDPA/c‐MWNT composites were much higher than that of PDPA without c‐MWNTs. Copyright © 2006 Society of Chemical Industry  相似文献   

3.
In this study, two colloidal dispersions of pure amorphous silicon dioxide particles, acetylated, and heat‐treated samples were tested for a possible application as a wood protection agents. The silicon, acetylated, and heat‐treated samples were exposed to an accelerated weathering experiment, and their dimensional stability was assessed. The weathering experiment comprised cycles of 2 h UV‐light irradiation followed by water spray for 18 min. The surface changes of the weathered samples were characterized by FT‐IR spectroscopy and color measurements. According to results, the silicon treatments showed lower color changes than untreated ones. However, acetylated and heat‐treated samples provided the lowest color changes. The resistance of the silicon, acetylated, and heat‐treated wood to decay was studied by means of brown and white rot fungi in laboratory decay tests. Decay test results revealed that acetylated and heat‐treated wood samples showed better decay resistance against P. placenta and C. versicolor than silicon treatments. Samples modified with silicon were exposed in above ground standard lap‐joint test in Ultuna, Sweden. The dispersions of pure amorphous silicon dioxide impregnated in wood did not significantly influence its hygroscopic and dimensional behavior. However, the silicon treatment reduced the color changes caused by weathering. The silicon impregnated samples showed a weak fungal discoloration similar to that of chromated copper arsenate impregnated controls in above ground standard lap‐joint test. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4506–4513, 2006  相似文献   

4.
Poly(4‐methyl‐1‐pentene) (PMP) hollow fibers were prepared and fabricated into gas separation or microporous membranes by the melt‐spun and cold‐stretched method. PMP resin was melt‐extruded into hollow fibers with cold air as the cooling medium. The effects of take‐up speed and thermotreatment on the mechanical behavior and morphology of the fibers were investigated. Scanning electronic microscope (SEM) photos were used to reveal the geometric structure of the section and surface of the hollow fibers. It was found that the original fiber had an asymmetric structure. A “sandwich” mode was used to describe the formation of this special fine structure. And a series of PMP hollow‐fiber membranes were prepared by subsequent drawing, and it was found that there was a “skin–core” structure on the cross section of these hollow‐fiber membranes. Asymmetric or microporous PMP hollow‐fiber membranes could be obtained by controlling posttreatment conditions. The morphology of these membranes were characterized by SEM, and the gas (oxygen, nitrogen, and carbon dioxide) permeation properties of the membranes was measured. The results indicate that the annealing time of the original fiber and the stretching ratio were the key factors influencing the structure of the resulting membrane. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2131–2141, 2006  相似文献   

5.
New glass coating materials containing γ‐glycidoxypropyltrimethoxy‐silane/zirconium(IV)‐n‐propoxide(2‐methoxyethylacetoacetate)/lead(II) nitrate were developed for UV‐light absorption by sol‐gel process. The effect of agitation time, temperature, and Zr complex and Pb2+ ion concentrations on UV light absorption were investigated. Zr complex was characterized by using 1H‐NMR, 13C‐NMR, and FTIR spectroscopy. Ultraviolet visible spectroscopy was utilized to determine the optical properties of coating materials. Results showed that coated glass has very low transmission in the UV region (300–400 nm) relative to uncoated glass, especially at 150°C for 15 h agitation. UV light transmission of coated glasses treated at 80, 100, 450, or 500°C was not different from uncoated glass. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1175–1179, 2006  相似文献   

6.
This work investigates two different melt‐blending strategies for preparing compatibilized polypropylene‐clay nanocomposites, specifically: (1) conventional twin‐screw extrusion, and (2) single‐screw extrusion capable of direct supercritical carbon dioxide (scCO2) feed to the extruder barrel. Proportional amounts (3 : 1) of maleic anhydride functionalized polypropylene compatibilizer and organically modified montmorillonite clay at clay loadings of 1, 3, and 5 wt % are melt‐blended with a polypropylene homopolymer using the two approaches. The basal spacing, degree of exfoliation, and dispersion of organoclay is assessed using X‐ray diffraction, transmission electron microscopy, and rheology. In terms of the latter, both steady shear and small‐amplitude oscillatory shear provide information about the apparent yield stress and solid‐like terminal behavior respectively. Finally, nanoindentation is performed to determine the room temperature modulus of each melt‐blended nanocomposite. The results reveal unequivocally that the high shear of the twin‐screw process is vastly superior to the single‐screw with in‐line scCO2 addition in generating well‐exfoliated, percolated polypropylene‐clay nanocomposites. It is likely that increased contact time between clay and scCO2 is necessary for scCO2 to positively affect exfoliation. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 884–892, 2007  相似文献   

7.
This paper traces the historical development of high temperature resistant rigid‐rod polymers. Synthesis, fiber processing, structure, properties, and applications of poly(p‐phenylene benzobisoxazole) (PBO) fibers have been discussed. After nearly 20 years of development in the United States and Japan, PBO fiber was commercialized with the trade name Zylon® in 1998. Properties of this fiber have been compared with the properties of poly(ethylene terephthalate) (PET), thermotropic polyester (Vectran®), extended chain polyethylene (Spectra®), p‐aramid (Kevlar®), m‐aramid (Nomex®), aramid copolymer (Technora®), polyimide (PBI), steel, and the experimental high compressive strength rigid‐rod polymeric fiber (PIPD, M5). PBO is currently the highest tensile modulus, highest tensile strength, and most thermally stable commercial polymeric fiber. However, PBO has low axial compressive strength and poor resistance to ultraviolet and visible radiation. The fiber also looses tensile strength in hot and humid environment. In the coming decades, further improvements in tensile strength (10–20 GPa range), compressive strength, and radiation resistance are expected in polymeric fibers. Incorporation of carbon nanotubes is expected to result in the development of next generation high performance polymeric fibers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 100: 791–802, 2006  相似文献   

8.
A new single‐/two‐photon sensitive monomer, (E)‐5‐(4‐ethoxystyryl)?2‐nitrobenzyl methacrylate (ENbMA), was synthesized and copolymerized with methyl methacrylate (MMA) to form a series of photosensitive copolymers P(ENbMA–MMA)s that were well characterized by 1H NMR and GPC. The photochemical and photophysical properties of both photosensitive monomer and copolymers upon visible light irradiation were studied by UV–Vis, FTIR, and HPLC spectra, which confirmed that 5‐(4‐ethoxystyryl)‐2‐nitrobenzyl ester can be photolyzed effectively with generation of the corresponding 5‐(4‐ethoxystyryl)‐2‐nitrosobenzaldehyde and carboxylic acid groups. The successful photocleavage endowed the optimized copolymers with excellent micropatterning property due to the effective generation of alkaline‐soluble carboxylic acid groups. Moreover, the high two‐photon absorption cross‐sections (over 20 GM at 800 nm) and the comparable photolysis upon two‐photon NIR light irradiation of the chromophores provided the copolymers with significant application in two‐photon microfabrication. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4099–4106, 2013  相似文献   

9.
A new comonomer ECz‐BEDOT‐ECz (EBEE) [ECz: N‐ethylcarbazole‐BEDOT:2,2′‐bis(3,4‐ethyhlenedioxy) thiophene] has been synthesized, characterized, and electropolymerized on Pt and carbon fiber microelectrodes (CFME). The ECz side group of the comonomer plays an important role in determining its physical properties PEBEE and it resembles the behavior of corresponding homopolymer (PECz). PBEDOT was increased by the incorporation of ECz monomer into structure. The environmental stability of PBEDOT was increased by incorporating the ECz unit into the structure. The new comonomer seems prefer to be electrodeposited onto CFME as opposed to Pt. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 795–801, 2007  相似文献   

10.
Dispersion copolymerization of acrylonitrile‐vinyl acetate (AN‐VAc) had been successfully performed in supercritical carbon dioxide (ScCO2) with 2,2‐azobisisobutyronitrile (AIBN) as a initiator and a series of lipophilic/CO2‐philic diblock copolymers, such as poly(styrene‐r‐acrylonitrile)‐b‐poly(1,1,2,2‐tetrahydroperfluorooctyl methacrylate) (PSAN‐b‐PFOMA), as steric stabilizers. In dispersion copolymerization, poly(acrylonitrile‐r‐vinyl acetate) (PAVAc) was emulsified in ScCO2 effectively using PSAN‐b‐PFOMA as a stabilizer. Compared with the precipitation polymerization (absence of stabilizer), the products prepared by dispersion polymerization possessed of higher yield and higher molecular weight. In addition, the particle morphology of precipitation polymerization was irregular, but the particle morphology of dispersion polymerization was uniform spherical particles. In this study, the effects of the initial concentrations of monomer and the stabilizer and the initiator, and the reaction pressure on the yield and the molecular weight and the resulting size and particle morphology of the colloidal particles were investigated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5640–5648, 2006  相似文献   

11.
Photocatalyst loading on a floating substitute is accepted as a promising method for the remediation of diesel‐polluted surface water. Therefore, novel photocatalysts based on polyurethane foams modified with silver/titanium dioxide/graphene ternary nanoparticles (PU–Ag/P25/G) were synthesized and investigated. Scanning electron microscopy, energy‐dispersive X‐ray spectrometry, X‐ray diffraction, Fourier transform infrared spectroscopy, and UV–visible spectroscopy showed the coexistence of Ag, Degussa P25 (P25), and graphene and the nanoscale dispersion of nanoparticles in the matrix and on the surface of the polyurethane (PU) foam. The diesel adsorption capacity of the photocatalyst reached 96 g/g. The maximum diesel degradation was found to be 76% in a period of 16 h. Compared with polyurethane‐foam‐supported P25/graphene (PU–P25/G) and polyurethane‐foam‐supported P25 (PU–P25), all of the adsorption isotherm and degradation kinetics followed the order PU–Ag/P25/G > PU–P25/G > PU–P25 > PU; this was due to the loading of different nanoparticles. Moreover, the degradation efficiency was reduced only 5% after five consecutive reactions; this showed good stability and reusability of the photocatalyst for surface water restoration. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43400.  相似文献   

12.
Ultraviolet (UV) weathering performance of unpigmented and rutile titanium dioxide pigmented rigid polyvinyl chloride (PVC)/wood‐fiber composites has been studied. The composite samples were manufactured by dry‐blending PVC, wood fibers, and other processing additives in a high‐intensity mixer. The dry‐blended compounds were extruded and compression molded into panel samples. The manufactured samples were artificially weathered using laboratory accelerated UV tests. Composite samples were exposed to 340‐nm fluorescent UV lamps and assessed every 200 h, for a total of 1200 h of accelerated weathering. Each assessment consisted of a visual examination of surface roughness or erosion, a contact angle measurement, a FTIR collection, and a color measurement. The experimental results indicated that wood fibers are effective sensitizers and that their incorporation into a rigid PVC matrix has a deleterious effect on the ability of the matrix to resist degradation caused ultraviolet irradiation. The light stability of these composites could be improved quite efficiently with the addition of rutile titanium dioxide photoactive pigment during formulation. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1943–1950, 2001  相似文献   

13.
The regioselectivity of catalysts generated in situ from dicarbonyl rhodium(I)(2,4‐pentanedione) and trifluoromethyl‐substituted triphenylphosphine ligands has been evaluated during the hydroformylation of 1‐octene. The influence of batch or semi‐batch operation, the solvent, and the number of trifluoromethyl substituents has been investigated. During batch operation in a supercritical carbon dioxide (CO2)‐rich system the differential n:iso ratio increases from approximately 4 to a value of 12–16 at about 90–95 % conversion for the catalyst based on bis[3,5‐bis(trifluoromethyl)phenyl]phenylphosphine. For semi‐batch conditions using hexane a constant n:iso ratio is obtained over a broad conversion range. Batch hydroformylation in neat 1‐octene is faster than in a supercritical CO2‐rich, one‐phase system, with a similar overall selectivity as observed in the supercritical case. The results provide further directions for the development of ligands that are especially designed for the separation of homogeneous catalysts in continuously operated hydroformylation in scCO2.  相似文献   

14.
N‐Phenyl‐3‐substituted 5‐pyrazolone derivatives were investigated as organic photostabilizers for rigid poly(vinyl chloride) (PVC). Their stabilizing efficiency was evaluated by the determination of the weight loss of the polymer after irradiation for different periods and by the determination of the amount of gel formation as well as the intrinsic viscosity of the soluble fraction of the degraded polymer. Moreover, the efficiency was evaluated from the extent of the discoloration of the degraded polymer. This was attributed not only to the radical trapping potency of the pyrazolone derivatives, which intervened with the radical degradation species in the degradation process of PVC, but also to the blocking of the newly formed radical sites on the polymeric chains. Their stabilizing efficiencies were compared with those of phenyl salicylate and 2‐hydroxy‐4‐(octyloxy)phenyl benzophenone, industrially known UV absorbers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1543–1555, 2006  相似文献   

15.
This work presents the different effects of steam and carbon dioxide activation on the microstructure of an oxidized polyacrylonitrile (PAN) fabric. An investigation was conducted on a series of carbonized fabrics and two series of activated carbon fabrics. The fabrics were activated by steam and carbon dioxide using heat‐treatment temperatures of 900–1100°C. Steam and carbon dioxide developed the microstructure initially present in the PAN‐based activated carbon fabrics, but with different effects. These fabrics in the form of fabric and powder were examined by X‐ray diffraction and Raman spectrometry. This study indicated that carbon dioxide only reacted with the crystalline edges or the irregular carbon on the fiber surface and that the inside structure of the fibers was not greatly affected. When the fabrics were activated using steam, water molecules reacted not only on the fiber surface but also with the carbon at the crystal edge and/or the nonregular carbon in the fibers, which led to communicating pore structures on the surface and in the inner portions of the fiber. This activation also promoted the denitrogenation reactions. Because of these structures and reactions, the activated carbon fabrics, which were activated by steam, had the highest stacking height for carbon layer planes (Lc), the highest number of layer planes (Lc/d002), the highest oxygen content, the largest crystal size (La), and the highest density over the other samples. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1090–1099, 2001  相似文献   

16.
The ternary copolymerization of maleic anhydride (MA), vinyl acetate (VA), and acrylic acid (AA) [P(MA‐co‐VA‐co‐AA)], which is considered to be an acceptor–donor–acceptor system, was carried out in 1,4‐dioxane with benzoyl peroxide as an initiator at 70°C under a nitrogen atmosphere. Constants of complex formation for the monomer systems in the study were determined by UV–visible (hydrogen‐bonding complex) and 1H‐NMR (charge transfer complex) methods, respectively. The results show that polymerization of the P(MA‐co‐VA‐co‐AA) system proceeds by an alternating terpolymerization mechanism. It is shown that the synthesized copolymers have typical polyelectrolyte behavior, ability for reversible hydrolysis–anhydrization reactions, and semicrystalline structures. In these cases, including radical polymerization, and formation of semicrystalline structures, the hydrogen‐bonding effect plays a significant role. The in vitro cytotoxicities of the synthesized terpolymer and alternating copolymer were evaluated using Raji cells (human Burkitt lymphoma cell line). The antitumor activities of prepared anion‐active copolymers were studied using methyl–thiazol–tetrazolium colorimetric assay and 50% of the cytotoxic dose of each copolymer and terpolymer were calculated. Hydrolyzed P(MA‐co‐VA‐co‐AA) and P(MA‐alt‐AA) copolymers have sufficiently high antitumor activity, which depends on the amount of hydrogen‐bonding carboxylic groups and their regular distribution in the side chain of functional macromolecules. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3425–3432, 2006  相似文献   

17.
Strongly adherent poly(aniline‐coo‐toluidine) coatings were synthesized on low‐carbon‐steel substrates by the electrochemical copolymerization of aniline with o‐toluidine with sodium tartrate as the supporting electrolyte. These coatings were characterized with cyclic voltammetry, ultraviolet–visible absorption spectroscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and scanning electron microscopy. The formation of the copolymer with the mixture of monomers in the aqueous sodium tartrate solution was ascertained by a critical comparison of the results obtained from the polymerizations of the individual monomers, aniline and o‐toluidine. The optical absorption spectrum of the copolymer was drastically different from the spectra of the respective homopolymers, polyaniline and poly(o‐toluidine). The extent of the corrosion protection offered by poly(aniline‐coo‐toluidine) coatings to low‐carbon steel was investigated in aqueous 3% NaCl solutions by open‐circuit‐potential measurements and a potentiodynamic polarization technique. The results of the potentiodynamic polarization measurements showed that the poly(aniline‐coo‐toluidine) coatings provided more effective corrosion protection to low‐carbon steel than the respective homopolymers. The corrosion rate depended on the feed ratio of o‐toluidine used for the synthesis of the copolymer coatings. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103:1868–1878, 2007  相似文献   

18.
Low‐molecular‐weight (Mn) polytetrafluoroethylene (PTFE) homopolymers were successfully prepared using a perfluorodiacyl initiator, bis(perfluoro‐2‐n‐propoxypropionyl) peroxide, in supercritical carbon dioxide. Solid‐state 19F NMR and Fourier transform infrared spectral analyses show that perfluoroalkyl end‐groups are present in the resultant PTFEs. Thermogravimetric analysis suggests all polymers with various Mn have outstanding thermal stability. Differential scanning calorimetry measurements indicate that both melting and crystallization transitions of PTFE shift to lower temperatures when Mn decreases, because shorter polymer chains can move more easily at lower temperatures. Investigation of polymerization kinetics suggests that the rate law for the polymerization has kinetic orders of 0.5 and 1.0 with respect to initiator and monomer concentrations, indicating that termination occurs through coupling of propagating chains. Melt fusion crystallinity of as‐polymerized PTFE can be as high as 86%, and the polymerization rate does not seem to be obviously affected by the total interphase area of the polymer phase, implying polymerization mainly occurs in the carbon dioxide‐rich fluid phase; meanwhile, the low viscosity and high diffusivity of supercritical carbon dioxide mean that propagating chains have more opportunities to meet, thus yielding low‐Mn PTFEs. Copyright © 2012 Society of Chemical Industry  相似文献   

19.
Surfaces unable‐to‐be‐irradiated are those that could not be directly exposed to UV irradiation because of their irregular structure or instability under UV irradiation. It is difficult to conduct surface photografting on these kinds of surfaces with conventional photografting methods. Here, a novel one‐step surface photografting method is introduced, by which some monomers were smoothly grafted on the surface of polymer substrates located in a region out of the reach of UV radiation. The mechanism is that the photochemical reaction is separated into three events, absorbing UV light in one place, then transporting light energy to another place, and reacting there; in other words, the conventional photochemical reaction is separated by space and time, and the key point is that the substrate does not need to be exposed to UV irradiation. The occurrence of grafting polymerization was proved by UV–vis, ATR‐IR, SEM, XPS, and water contact angle measurements. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2269–2276, 2006  相似文献   

20.
Thermal characterization of maleic anhydride‐styrene‐allyl propionate (MA‐St‐AP) terpolymer and its ester derivatives named as n‐alkyl maleate and shown as nPr MA‐St‐AP, nBu MA‐St‐AP, nPn MA‐St‐AP, and nBz MA‐St‐AP was carried out. The thermal characterization was performed using thermal analysis techniques such as TGA, DTA, DSC, and TMA. Different results were observed between the original terpolymer and its ester derivatives. Thermal stabilities of the terpolymer and its ester derivatives were compared by using various measurements plotted as TGA, DTA, DSC, and TMA curves. The increase in the alcohols' carbon numbers added to the original terpolymer results in ester derivatives with different thermal stability behavior. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 600–604, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号