首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidative polycondensation reaction conditions of 4‐[(pyridine‐3‐yl‐methylene) amino]phenol (4‐PMAP) were studied using H2O2, atmospheric O2, and NaOCl oxidants in an aqueous alkaline medium between 30°C and 90°C. Synthesized oligo‐4‐[(pyridine‐3‐yl‐methylene) amino] phenol (O‐4‐PMAP) was characterized by 1H‐, 13C NMR, FTIR, UV–vis, size exclusion chromatography (SEC), and elemental analysis techniques. The yield of O‐4‐PMAP was found to be 32% (for H2O2 oxidant), 68% (for atmospheric O2 oxidant), and 82% (for NaOCl oxidant). According to the SEC analysis, the number–average molecular weight, weight–average molecular weight, and polydispersity index values of O‐4‐PMAP was found to be 5767, 6646 g mol?1, and 1.152, respectively, using H2O2, and 4540, 5139 g mol?1, and 1.132, respectively, using atmospheric O2, and 9037, 9235 g mol?1, and 1.022, using NaOCl, respectively. According to TG and DSC analyses, O‐4‐PMAP was more stable than 4‐PMAP against thermal decomposition. The weight loss of O‐4‐PMAP was found to be 94.80% at 1000°C. Also, antimicrobial activities of the oligomer were tested against B. cereus, L. monocytogenes, B. megaterium, B. subtilis, E. coli, Str. thermophilus, M. smegmatis, B. brevis, E. aeroginesa, P. vulgaris, M. luteus, S. aureus, and B. jeoreseens. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3327–3333, 2006  相似文献   

2.
The oxidative polycondensation reaction conditions of N,N′‐bis[(2‐hydroxy‐1‐naphthyl)methylene]urea (2‐HNMU) has been accomplished using NaOCl, H2O2, and air O2 oxidants in an aqueous alkaline medium. The structures of the obtained monomer and oligomer were confirmed by FTIR, UV–vis, 1H NMR, 13C NMR, and elemental analysis. The characterization was made by TG‐DTA, size exclusion chromatography (SEC), and solubility tests. At the optimum reaction conditions, the yield of oligo‐N,N′‐bis[(2‐hydroxy‐1‐naphthyl)methylene]urea (O‐2‐HNMU) was found to be 95% (for air O2 oxidant), 51% (for H2O2 oxidant), 96% (for NaOCl oxidant). According to the SEC analysis, the number‐average molecular weight (Mn), weight‐average molecular weight (Mw), and polydispersity index values of O‐2‐HNMU was found to be 1036, 1225 g/mol, and 1.182, respectively, using H2O2, and 765, 1080 g/mol, and 1.412, respectively, using air O2, and 857, 1105 g/mol, and 1.289, respectively, using NaOCl. TG‐DTA analyses showed that O‐2‐HNMU was more stable than 2‐HNMU. According to TG analyses, the carbonaceous residue of 2‐HNMU and O‐2‐HNMU was found to be 0.49% and 2.11% at 1000°C, respectively. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

3.
In this study, the oxidative polycondensation reaction conditions of 4‐[(4‐methylphenyl)iminomethyl]phenol (4‐MPIMP) were studied by using oxidants such as air O2, H2O2, and NaOCl in an aqueous alkaline medium between 50 and 90°C. The structures of the synthesized monomer and polymer were confirmed by FTIR, UV–vis, 1H–13C‐NMR, and elemental analysis. The characterization was made by TGA‐DTA, size exclusion chromatography (SEC), and solubility tests. At the optimum reaction conditions, the yield of poly‐4‐[(4‐methylphenyl)iminomethyl]phenol (P‐4‐MPIMP) was found to be 28% for air O2 oxidant, 42% for H2O2 oxidant, and 62% for NaOCl oxidant. According to the SEC analysis, the number–average molecular weight (Mn), weight–average molecular weight (Mw), and polydispersity index values of P‐4‐MPIMP were found to be 4400 g mol?1, 5100 g mol?1, and 1.159, using H2O2, and 4650 g mol?1, 5200 g mol?1, and 1.118, using air O2, and 5100 g mol?1, 5900 g mol?1, and 1.157, using NaOCl, respectively. According to TG analysis, the weight losses of 4‐MPIMP and P‐4‐MPIMP were found to be 85.37% and 72.19% at 1000°C, respectively. P‐4‐MPIMP showed higher stability against thermal decomposition. Also, electrical conductivity of the P‐4‐MPIMP was measured, showing that the polymer is a typical semiconductor. The highest occupied molecular orbital and the lowest unoccupied molecular orbital energy levels and electrochemical energy gaps (E) of 4‐MPIMP and P‐4‐MPIMP were found to be ?5.76, ?5.19; ?3.00, ?3.24; 2.76 and 1.95 eV, respectively. According to UV–vis measurements, optical band gaps (Eg) of 4‐MPIMP and P‐4‐MPIMP were found to be 3.34 and 2.82 eV, respectively. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

4.
The oxidative polycondensation reaction conditions of 4‐[(2‐mercaptophenyl) imino methyl] phenol (2‐MPIMP) were studied in an aqueous acidic medium between 40 and 90°C by using oxidants such as air, H2O2, and NaOCl. The structures of the synthesized monomer and polymer were confirmed by FTIR, 1H NMR, 13C NMR, and elemental analysis. The characterization was made by TGA‐DTA, size exclusion chromatography (SEC) and solubility tests. At the optimum reaction conditions, the yield of poly‐4‐[(2‐mercaptophenyl) imino methyl]phenol (P‐2‐MPIMP) was found to be 92% for NaOCl oxidant, 84% for H2O2 oxidant 54% for air oxidant. According to the SEC analysis, the number‐average molecular weight (Mn), weight‐average molecular weight (Mw), and polydispersity index values of P‐2‐MPIMP were found to be 1700 g mol?1, 1900 g mol?1, and 1.118, using H2O2; 3100 g mol?1, 3400 g mol?1, and 1.097, using air; and 6750 g mol?1, 6900 g mol?1, and 1.022, using NaOCl, respectively. According to TG analysis, the weight losses of 2‐MPIMP and P‐2‐MPIMP were found to be 95.93% and 76.41% at 1000°C, respectively. P‐2‐MPIMP showed higher stability against thermal decomposition. Also, electrical conductivity of the P‐2‐MPIMP was measured, showing that the polymer is a typical semiconductor. The highest occupied molecular orbital, the lowest unoccupied molecular orbital, and the electrochemical energy gaps (Eg) of 2‐MPIMP and P‐2‐MPIMP were found to be ?6.13, ?6.09; ?2.65, ?2.67; and 3.48, 3.42 eV, respectively. Kinetic and thermodynamic parameters of these compounds investigated by MacCallum‐Tanner and van Krevelen methods. The values of the apparent activation energies of thermal decomposition (Ea), the reaction order (n), pre‐exponential factor (A), the entropy change (ΔS*), enthalpy change (ΔH*), and free energy change (ΔG*) were calculated from the TGA curves of compounds. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
The oxidative polycondensation reaction conditions of 2-[(4-chlorophenyl) imino methylene] phenol (CPIMP) were studied by air O2 and NaOCl oxidants at various temperatures and times. Optimum reaction conditions of air O2 and NaOCl were determined for CPIMP. Oligo-2-[(4-chlorophenyl) imino methylene] phenol (OCPIMP) was synthesized from the oxidative polycondensation of CPIMP with air O2 and NaOCl in alkaline medium between 50 and 90°C. The number-average molecular weight (Mn) weight-average molecular weight (Mw) and polydispersity index (PDI) values of OCPIMP were found to be 470 g mol?1, 895 g mol?1, and 1.90, using NaOCl, and 455 g mol?1, 765 g mol?1, and 1.68, using air O2, respectively. At the optimum reaction conditions, the yield of OCPIMP was found to be 62.80% (for air O2 oxidant) and 87.50% (for NaOCl oxidant). The OCPIMP was characterized by 1H-NMR, FT-IR, UV-Vis and elemental analysis. The thermogravimetric (TGA)-DTA analyses were shown to be stable of OCPIMP and its oligomer metal complexes (such as Co+2, Ni+2, and Cu+2) against thermo-oxidative decomposition. The weight loss of OCPIMP and its oligomer metal complexes (such as Co+2, Ni+2, and Cu+2) were found to be 98%, 85%, 80%, and 82%, respectively, at 1000°C.  相似文献   

6.
?smet Kaya  Semra Koça 《Polymer》2004,45(6):1743-1753
The oxidative polycondensation reaction conditions of 2-amino-3-hydroxypyridine (AHP) and 2-[benzilydeneimino] pyridine-3-ol (BIP) were studied by oxidants such as with air O2, NaOCl and H2O2. Oligo-2-amino-3-hydroxypyridine (OAHP) was synthesized from the oxidative polycondensation of AHP with air O2, NaOCl and H2O2 in an aqueous acidic and alkaline medium at 30-90 °C. BIP was synthesized from condensation of 2-amino-3-hydroxypyridine with benzaldehyde. Oligo-2-[benzilydeneimino] pyridine-3-ol (OBIP) was synthesized from the oxidative polycondensation of BIP with air O2, NaOCl and H2O2 in an aqueous alkaline medium at 40-90 °C. About 95% BIP was converted to OBIP. The number average molecular weight, (Mn) weight average molecular weight (Mw) and polydispersity index (PDI) values of OAHP and OBIP (for air O2 oxidant) were found to be 1433, 1912 g mol−1, 1.33 and 2637, 5106 g mol−1 and 1.94, respectively. At the optimum reaction conditions, the yield of OAHP was found to be 86.0% (for air O2 oxidant), 43.0% (for H2O2 oxidant) and 85.0% (for NaOCl oxidant). At the optimum reaction conditions, the yield of OBIP was found to be 91.0% (for air O2 oxidant), 92.0% (for H2O2 oxidant) and 95.0% (for NaOCl oxidant). The OHAP and OBIP were characterized by FT-IR, UV-Vis, 1H and 13C-NMR elemental analysis. TG and DTA analyses were shown to be unstable of OAHP and OBIP against thermo-oxidative decomposition. According to TG analyses, the weight loss of OAHP and OBIP was found to be 97.35 and 96.60% at 520 and 685 °C, respectively.  相似文献   

7.
?smet Kaya  Sermet Koyuncu 《Polymer》2003,44(24):7299-7309
The product and the oxidative polycondensation reaction conditions of oligo-4-aminopyridine were studied by using NaOCl as oxidant. Oligo-4-aminopyridine (4-OAP) was synthesized from the oxidative polycondensation of 4-aminopyridine (4-AP) in an aqueous solution medium acidic and neutral between 25 and 60 °C by using NaOCl as oxidant. About 85% of 4-AP was converted to 4-OAP. The number average molecular weight, (Mn) mass average molecular weight (Mw) and polydispersity index (PDI) values of 4-OAP synthesized were found to be 270, 850 g mol−1 and 3.15, respectively, using NaOCl. The respective values of the Schiff base were 1721, 2256 g mol−1 and 1.31, respectively, using air oxygen and 2173, 2372 g mol−1 and 1.09, respectively, using NaOCl and 2749, 6432 g mol−1 and 2.33, respectively, using H2O2. At the optimum reaction conditions, the yield of oligo-2-[(pyridine-4-yl-imino) methyl] phenol (OPMP) were found to be 86% (H2O2) and 89% (NaOCl) and 95% (air oxygen). The 4-OAP and OPMP were characterized by 1H NMR, FT-IR, UV-Vis and elemental analysis. TG analysis showed to be stable of 4-OAP against thermo-oxidative decomposition. The weight loss of 4-OAP and its Schiff base oligomer was found to be 50, 86.39 and 71.78% at 525, 625 and 1000 °C, respectively. Also, new oligomeric Schiff base was synthesized from condensation of 4-AP with salicylaldehyde and their structures and properties were determined. During polycondensation reaction, a part of the azomethine (-CHN-) groups oxidized to carboxylic (-COOH) group. Thus, soluble fraction in water of oligo-2-[(pyridine-4-yl-imino) methyl] phenol involved in carboxylic (-COOH) (11%) group. Besides, the structure and properties of oligomer-metal complexes of oligo-2-[(pyridine-4-yl-imino) methyl] phenol (OPMP) with Cu(II), Ni(II) and Co(II) were studied.  相似文献   

8.
Oligo‐2‐[(4‐bromophenylimino)methyl]phenol (OBPIMP) was synthesized from the oxidative polycondensation reaction of 2‐[(4‐bromophenylimino)methyl]phenol (BPIMP) with air and NaOCl oxidants in an aqueous alkaline medium between 50 and 90°C. The yield of OBPIMP was found to be 67 and 88% for air and NaOCl oxidants, respectively. Their structures were confirmed by elemental and spectral such as IR, ultraviolet–visible spectrophotometer (UV–vis), 1H‐NMR, and 13C‐NMR analyses. The characterization was made by TG‐DTA, size exclusion chromatography, and solubility tests. The resulting complexes were characterized by electronic and IR spectral measurements, elemental analysis, AAS, and thermal studies. According to TG analyses, the weight losses of OBPIMP, and oligomer‐metal complexes with Co+2, Ni+2, and Cu+2 ions were found to be 93.04%, 59.80%, 74.23%, and 59.30%, respectively, at 1000°C. Kinetic and thermodynamic parameters of these compounds investigated by Coats‐Redfern, MacCallum‐Tanner, and van Krevelen methods. The values of the apparent activation energies of thermal decomposition (Ea), the reaction order (n), preexponential factor (A), the entropy change (ΔS*), enthalpy change (ΔH*), and free energy change (ΔG*) obtained by earlier‐mentioned methods were all good in agreement with each other. It was found that the thermal stabilities of the complexes follow the order Cu(II) > Co(II) > Ni(II). © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
In this work, the oxidative polycondensation reaction conditions of benzylidene-4′-hydroxyanilene (B-4′-HA) were studied using oxidants such as air O2, H2O2 and NaOCl in an aqueous alkaline medium between 40 and 95 C. Oligo-benzylidene-4′-hydroxyanilene was characterized by 1H-NMR, FT-IR, UV-Vis, size exclusion chromatography (SEC) and elemental analysis techniques. The solubility of oligomer using organic solvents such as DMF, THF, DMSO, methanol, ethanol, CHCl3, CCl4, toluene, acetonitrile, ethyl acetate was investigated. According to air O2 oxidant (flow rate 8.5 L/h), the conversion of B-4′-HA was 82.0% in optimum conditions such as [B-4′-HA]0=[KOH]0=0.1015 mol/L at 50 C for 25 h. According to the SEC analysis, the number-average molecular weight (Mn), weight-average molecular weight (Mw) and polydispersity index (PDI) values of O-B-4′-HA were found to be 1852 g mol−1, 3101 g mol−1 and 1.675; 2123 g mol−1, 4073 g mol−1 and 1.919; 2155 g mol−1, 4164 g mol−1 and 1.932, using air oxygen, NaOCl and H2O2 oxidants, respectively. Also, Thermo gravimetric analysis (TGA) showed oligo-benzylidene-4′-hydroxyanilene to be unstable against thermo-oxidative decomposition. The weight loss of O-B-4′-HA was found to be 95.87% at 1000 C.  相似文献   

10.
A new polyphenol (poly‐2‐[(4‐methylbenzylidene)amino]phenol) (P(2‐MBAP)) containing an azomethine group was synthesized by oxidative polycondensation reaction of 2‐[(4‐methylbenzylidene)amino]phenol (2‐MBAP) with NaOCl, H2O2, and O2 oxidants in an aqueous alkaline medium. The structures of 2‐MBAP and P(2‐MBAP) were characterized by UV‐vis, FT‐IR, and 1H NMR spectra. While the monomer decomposed completely up to 350°C and 57.2% of the polymer decomposed up to 1000°C. The thermal degradation of P(2‐MBAP) was also supported by the Thermo‐IR spectra recorded in the temperature range of 25–800°C. Electrical conductivity of the polymer was observed to increase 108 fold after doping with I2. Antimicrobial activities of the P(2‐MBAP) and 2‐MBAP against Sarcina lutea, Enterobacter aerogenes, Escherichia coli, Enterococcus feacalis, Klebsiella pneumoniae, Bacillus subtilis, Candida albicans, and Saccharomyces cerevisiae were also investigated. The number average molecular weight (Mn), weight average molecular weight (Mw) and polydispersity index (PDI) of the polymers were determined by gel permeation chromatography (GPC). © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41758.  相似文献   

11.
Static and dynamic light‐scattering techniques were used to study biodegradable thermoplastic poly(hydroxy ester ether) in N,N‐dimethylacetamide (DMAc). A weight‐average molecular weight MW = 6.4 × 104 g/mol, radius of gyration RG = 9.4 nm, second‐virial coefficient A2 = 1.05 × 10?3 mol mL/g2, translational diffusion coefficient D = 1.34 × 10?7 cm2/s, and hydrodynamic radius RH = 8.3 nm are reported. In addition, the effect of H2O on the polymer chain's conformation and architecture in a DMAc/H2O solution is evaluated. Results suggest that H2O makes the mixed solvent poorer as well as promotes polymer chain branching via intramolecular transesterification. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1737–1745, 2001  相似文献   

12.
Recently a homogeneous liquid‐phase ethylene oxide (EO) process with nearly total EO selectivity, catalyzed by methyltrioxorhenium with H2O2 as an oxidant, was reported. Fundamental mass transfer and kinetic studies of this reaction are reported in the present work. Volumetric expansion studies revealed that the liquid reaction phase (methanol + H2O2/H2O) is expanded by up to 12% by compressed ethylene in the 20–40°C range and up to 50 bars. This represents an increase in ethylene solubility by approximately one‐order of magnitude, attributed to the unique exploitation of near‐critical ethylene (Pc = 50.76 bar; Tc = 9.5°C). Interphase mass‐transfer coefficients for ethylene dissolution into the liquid phase were obtained experimentally. Operating at conditions that enhanced the ethylene solubility and eliminated interphase mass‐transfer limitations maximized the EO productivity (1.61–4.97 g EO/h/g cat), rendering it comparable to the conventional process. Intrinsic kinetic parameters, estimated from fixed‐time semibatch reactor studies, disclosed the moderate activation energy (57 ± 2 kJ/mol). © 2012 American Institute of Chemical Engineers AIChE J, 59: 180–187, 2013  相似文献   

13.
To decrease the sintering temperature of MgO‐Y2O3 composites to avoid undesired grain coarsening, high reactive MgO‐Y2O3 nanopowders were synthesized via microwave combustion method. The degree of combustion was enhanced effectively by adding an extra oxidant ammonium nitrate. The as‐synthesized MgO‐Y2O3 nanopowders, ~18 nm in size, showed high specific surface area of 64.55 m2/g and low agglomeration. Relative density of 98% was obtained when sintered at a low sintering temperature of 1350°C. The high reactivity can be attributed to the lower activation energy Q (131.13 kJ/mol), compared with samples without extra oxidant (192.97 kJ/mol).  相似文献   

14.
Ortho-imine functionalized oligophenol was synthesized via enzymatic polymerization of 2-((4-nitrophenylimino)methyl)phenol (NPIMP). Enzymatic polymerization was catalyzed by Horseradish peroxidase (HRP) enzyme and hydrogen peroxide (H2O2) oxidizer yielded oligophenol with imine functionality on the side-chain. Effects of various factors including reaction pH, temperature and solvent system on the polymerization were studied. Optimum polymerization with the highest yield (96 %) and number-average molecular weight (M n = 7300 g/mol, degree of polymerization ≈ 30) was accomplished using equivolume mixture of acetone/pH 7.0 phosphate buffer medium at 35 °C in 24 h under air. Characterization of the resulting oligomer was accomplished by ultraviolet-visible spectroscopy (UV-Vis), fourier transform infrared spectroscopy (FT-IR), 1H and 13C nuclear magnetic resonance (1H and 13C NMR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), cyclic voltammetry (CV) and gel permeation chromatography (GPC). The polymerization involved elimination of hydrogen from NPIMP, and the oligomer possessed phenolic –OH end groups. The oligomer backbone was composed of oxyphenylene and phenylene repeat units. The optical band gaps (Eg) of NPIMP and oligo(NPIMP) were measured as 3.21 and 3.39 Eg, respectively. Thermal stability of the oligo(NPIMP) was also found to be relatively high, and lost 5 % of its mass at 175 °C and lost 50 % of its mass at 600 °C.  相似文献   

15.
The effect of the reaction conditions on the grafting parameters during grafting of 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid onto sodium carboxymethylcellulose using H2O2/Fe+2 redox pair are studied at 30°C. The grafting ratio, add on, and conversion initially increase with the H2O2 concentration in the range of (10.0–15.0) × 10?2 mol dm?3. Thereafter, these parameters decrease with the H2O2 concentration. The grafting ratio, add on, and conversion increase when increasing the ferrous ion concentration from (0.5 to 4.0) × 10?2 mol dm?3 and decrease with a further increase in the concentration. It is observed that the grafting ratio and add on increase with the monomer concentration, whereas the conversion decrease. The hydrogen ions seem to be facilitating the grafting reaction up to a certain concentration and after this concentration seem to be retarding the process. The grafting ratio, add on, and conversion decrease with the sodium carboxymethylcellulose concentration. When increasing the time period from 60 to 90 min, the grafting parameters increase but decrease thereafter. Similarly, when increasing the temperature from 25 to 30°C, the grafting parameters increase and decrease thereafter. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4819–4825, 2006  相似文献   

16.
J. Zhou  Q. Liu  Q. Sun  S. Hwa Chan 《Fuel Cells》2014,14(4):667-670
Aqueous‐based tape casting is a low‐cost and environment friendly technology. In this paper, large‐area fuel electrode‐supported solid oxide cells (SOCs) were fabricated by this technology in conjunction with co‐sintering process. A 10 cm × 10 cm single cell with NiO/Zr0.92Y0.08O2–δ fuel electrode, Zr0.92Y0.08O2–δ electrolyte and La0.6Sr0.4Co0.2Fe0.8O3+δ/Ce0.9Gd0.1O2+δ air electrode has been successfully developed with improved electrode microstructure and hence the cell performance with the maximum power density of 534 mW cm–2 at 850 °C with humidified H2 as the fuel and air as the oxidant has been achieved. The optimal slurry formulations used in the fabrication of SOC were summarized for future reference purpose.  相似文献   

17.
Q. Li  V. Thangadurai 《Fuel Cells》2009,9(5):684-698
In this paper, we report the synthesis, structure and electrical conductivity of Mo‐doped compounds with a nominal chemical formula of Ce1–xMoxO2+δ (x = 0.05, 0.07, 0.1) (CMO). The formation of fluorite‐like structure with a small amount of Ce8Mo12O49 impurity (JCPDS Card No. 31‐0330) was confirmed using a powder X‐ray diffraction (PXRD). The fluoride‐type structure was retained under wet H2 and CH4 atmospheres at 700 and 800 °C, while diffraction peaks due to metal Mo were observed in dry H2 under the same condition. AC impedance measurements showed that the total conductivity increases with increasing Mo content in CMO, and among the investigated samples, Ce0.9Mo0.1O2+δ exhibited the highest electrical conductivity with a value of 2.8 × 10–4 and 5.08 × 10–2 S cm–1 at 550 °C in air and wet H2, respectively. The electrical conductivity was found to be nearly the same, especially at high temperatures, in air, O2 and N2. Chemical compatibility of Ce0.9Mo0.1O2+δ with 10 mol‐% Y2O3 stabilised ZrO2 (YSZ) and Ce0.9Gd0.1O1.95 (CGO) oxide ion electrolytes in wet H2 was evaluated at 800–1,000 °C, using PXRD and EDX analyses. PXRD showed that CMO was found to react with YSZ electrolyte at 1,000 °C. The area specific polarisation resistance (ASPR) of Ce0.9Mo0.1O2+δ on YSZ was found to be 8.58 ohm cm2 at 800 °C in wet H2.  相似文献   

18.
BACKGROUND: Photocatalysis is one of the advanced oxidation processes that has gained in importance over recent years owing to its ability to decompose a wide range of organic and inorganic pollutants at ambient temperature and pressure. However, there are two essential issues regarding photocatalytic processes, i.e. limitations on photon transfer and on mass transfer. In the present study, a novel photo‐impinging streams reactor, which can minimize such limitations, has been utilized in the photocatalytic degradation of phenol. The design and operating parameters such as type of nozzle, flow rate, catalyst loading, pH, initial phenol concentration and light intensity were found to have the expected impact on the efficiency of the process. The effects of two different co‐oxidants, H2O2 and Na2S2O8 on the photocatalysis were also examined. RESULTS: Results indicated that 100 mg L?1 of phenol in a 750 cm3 solution was completely degraded within 2.5 h reaction time in the presence of TiO2 without a co‐oxidant present; and within 1 h in the presence of a co‐oxidant. CONCLUSION: A comparison between the current data and those available in the literature revealed higher efficiency and increased performance of the present reactor relative to conventional apparatus. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
Photo‐oxidation of cyanide was studied in aqueous solution using a low‐pressure ultra‐violet (UV) lamp along with H2O2 as an oxidant. It was observed that by UV alone, cyanide degradation was slow but when H2O2 was used with UV, the degradation rate became faster and complete degradation occurred in 40 min. The rate of degradation increased as the lamp wattage was increased. It was also observed that cyanide oxidation is dependent on initial H2O2 concentration and the optimum dose of H2O2 was found to be 35.3 mmol dm?3. Photo‐oxidation reactions were carried out at alkaline pH values (10–11) as at acidic pH values, cyanide ions form highly toxic HCN gas which is volatile and difficult to oxidise. By the UV/H2O2 process, using a 25 W low‐pressure UV lamp and at alkaline pH of 10.5 with an H2O2 dose of 35.3 mmol dm?3, cyanide (100 mg dm?3) was completely degraded in 40 min when air was bubbled through the reactor, but when pure oxygen was bubbled the time reduced to 25 min. The cyanide degradation reaction pathway has been established. It was found that cyanide was first oxidised to cyanate and later the cyanate was oxidised to carbon dioxide and nitrogen. The kinetics of cyanide oxidation were found to be pseudo‐first order and the rate constant estimated to be 9.9 × 10?2min?1 at 40 °C. The power required for complete degradation of 1 kg of cyanide was found to be 167 kWh (kilowatt hour). Copyright © 2004 Society of Chemical Industry  相似文献   

20.
We present a template‐free synthesis of Fe3O4/SiOC(H) nanocomposites with in situ formed Fe3O4 nanoparticles with a size of about 50 nm embedded in a nanoporous SiOC(H) matrix obtained via a polymer‐derived ceramic route. Firstly, a single‐source precursor (SSP) was synthesized by the reaction of allylhydridopolycarbosilane (AHPCS) with Fe‐acetylacetonate [Fe(acac)3] at 140°C. The SSP was heat‐treated at 170°C to generate Fe3O4 nanocrystals in the cross‐linked polymeric matrix. Subsequently, the SSP was pyrolyzed at 600°C–700°C in argon atmosphere to yield porous Fe3O4/SiOC(H) nanocomposites with the high BET surface area up to 390 m2/g, a high micropore surface area of 301 m2/g, and a high micropore volume of 0.142 cm3/g. The Fe‐free SiOC(H) ceramic matrix derived from original AHPCS is nonporous. The in situ formation of Fe3O4 nanoparticles embedded homogeneously within a nanoporous SiOC(H) matrix shows significantly enhanced catalytic degradation of xylene orange in aqueous solution with H2O2 as oxidant as compared with pure commercial Fe3O4 nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号