首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bis propargyl ether bisphenol A (PBPA) was synthesized and blended with 4,4′‐bismaleimide diphenyl methane (BDM) at different molar ratios. The cure behavior of the blend resins was measured by DSC and FTIR spectra. The results indicated that the onset cure temperatures of the blend resins were about 20–30°C lower than that of pure PBPA, and the cure exothermic enthalpy of the resins also significantly reduced from 1320 (PBPA) to 493 J/g (PBPA–BDM (1.0:2.0)). The thermal stabilities and dynamic mechanical properties of the cured resins were characterized by TGA and DMA, respectively. The thermal stability of the resins improved markedly with the increase in BDM content, and the glass transition temperature increased from 306°C for PBPA–BDM (1.0:0.5) to 358°C for PBPA–BDM (1.0:2.0). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3610–3615, 2006  相似文献   

2.
In this article, propargyl functionalized novolac resins (PN resins), with varying propargyl contents and varying molecular weights, were synthesized conveniently. The structural characteristics were determined by 1HNMR and FTIR methods. Thermal cure studies revealed that the uncatalyzed thermal cure was remarkably affected by propargyl extent, while it was hardly affected by molecular weight. The processability of the as‐prepared PN resins was excellent as matrix of composite materials. The cure mechanism was complicated; postcure at high temperature was required to achieve entire crosslink formation. Both dynamic mechanical analysis and thermogravimetric analysis showed that the cured PN resins had substantially improved thermal mechanical properties and thermal stability in comparison to conventional cured phenolics. High propargyl extent was preferred for high thermal stability. The results show that PN resin is one of the ideal candidates for advanced composites matrices in thermostructural and ablative applications. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1010–1017, 2006  相似文献   

3.
Two maleimido end‐capped poly(ethylene glycol) (m‐PEG) of different molecular weights were synthesized and blended at various proportions with bismaleimide resin (4,4′‐bismaleimido diphenylmethane) (BDM). The curing behavior and the thermal properties of the m‐PEG/BDM blends were studied and presented here. It was found that the addition of m‐PEG enhanced the processability of the BDM resin significantly. The processing window of the BDM resin was increased from approximately 20 to 80°C. The addition of m‐PEG modified resins, however, resulted not only in the reduction in the thermal stability of the blended BDM resin but also elevation of the coefficients of thermal expansion. The changes in thermal/mechanical properties of the blends were found to be proportional to the amounts of m‐PEG incorporated. It was observed that the curing behavior, and thermal and mechanical properties, of the blends were independent of the molecular weight of the PEG segment. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2935–2945, 2002  相似文献   

4.
Epoxy based on diglycidyl ether of bisphenol A + 4,4′diaminodiphenylsulfone blended with poly(vinyl acetate) (PVAc) was investigated through differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and environmental scanning electron microscopy (ESEM). The influence of PVAc content on reaction induced phase separation, cure kinetics, morphology and dynamic‐mechanical properties of cured blends at 180°C is reported. Epoxy/PVAc blends (5, 10 and 15 wt % of PVAc content) are initially miscible but phase separate upon curing. DMTA α‐relaxations of cured blends agree with Tg results by DSC. The conversion‐time data revealed the cure reaction was slower in the blends than in the neat system, although the autocatalytic cure mechanism was not affected by the addition of PVAc. ESEM showed the cured epoxy/PVAc blends had different morphologies as a function of PVAc content: an inversion in morphology took place for blends containing 15 wt % PVAc. The changes in the blend morphology with PVAc content had a clear effect on the DMTA behavior. Inverted morphology blends had low storage modulus values and a high capability to dissipate energy at temperatures higher than the PVAc glass‐transition temperature, in contrast to the behavior of neat epoxy and blends with a low PVAc content. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1507–1516, 2007  相似文献   

5.
In this article, 2,2′‐bis[4‐(4‐maleimidephen‐oxy)phenyl)]propane (BMPP) resin and N,N‐4,4′‐bismaleimidodiphenylmethyene (BDM) resin blends were modified by diallyl bisphenol A (DABPA). The effects of the mole concentration of BMPP on mechanical properties, fracture toughness, and heat resistance of the modified resins were investigated. Scanning electron microscopy was used to study the microstructure of the fractured modified resins. The introduction of BMPP resin improves the fracture toughness and impact strength of the cured resins, whose thermal stabilities are hardly affected. Dynamic mechanical analysis shows that the modified resins can maintain good mechanical properties at 270.0°C, and their glass transition temperatures (Tg) are above 280.0°C. When the mole ratio of BDM : BMPP is 2 : 1(Code 3), the cured resin performs excellent thermal stability and mechanical property. Its Tg is 298°C, and the Charpy impact strength is 20.46 KJ/m2. The plane strain critical stress intensity factor (KIC) is 1.21 MPa·m0.5 and the plane strain critical strain energy release rate (GIC) is 295.64 J/m2. Compared with that of BDM/DABPA system, the KIC and GIC values of Code 3 are improved by 34.07% and 68.10%, respectively, which show that the modified resin presented good fracture toughness. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40395.  相似文献   

6.
The cure behavior and properties of epoxy/dicyanate blends containing a stoichiometric amount of an amine curing agent for epoxilde groups were investigated as a function of blend composition. Differential scanning calorimetry (DSC) was used to investigate the dynamic and isothermal cure behavior of the blends. The cure rate of the blend increased with increasing dicyanate content. A second order autocatalytic reaction mechanism described the cure kinetics of the blends. The kinetic parameters were determined by fitting the dynamic DSC data to the model kinetic equation. The k10 and E1 values were mainly affected by the change of dicyanate content. The glass transition temperature of the blend decreased with increasing dicyanate content. The thermal decomposition characteristics of the blends were investigated by thermogravimetric analysis (TGA). Dynamic mechanical analysis (DMA) and thermal mechanical analysis (TMA) were used to investigate the mechanical properties of the blends. With increasing dicyanate content, the cure rate increased but the thermal and mechanical properties of the cured blends were not improved.  相似文献   

7.
A series of allyl‐functional novolac (AN) resins with various allylation degree, from 32.4 to 114.6%, were synthesized and blended reactively with 4,4′‐bismaleimide biphenyl methane (BMI) at a weight ratio of 2.50 : 1 to get BMI‐modified and allyl‐functional novolac (BMAN) resins. Structural characteristics of the resins were determined by Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1HNMR) techniques. Processing properties of BMAN resin system was evaluated by solubility, rheology, and thermal gelation, and the results show that processing properties of BMAN resins were excellent and could be tailored by changing allylation degree of AN resins. Differential scanning calorimetry (DSC) was used to evaluate cure reactivity of BMAN resin system, and the results reveal that the resins with higher allylation degree possessed better cure reactivity. Thermal properties were evaluated by means of dynamic mechanical analysis (DMA) and thermogravimetry analysis (TGA) techniques. The results reveal that with increase in allylation degree of resins the thermal stability of BMAN resins increased because of increase in crosslinking density, but char‐yields of the above resins at 800°C decreased in turn. Understanding of the relationship between allylation degree and properties of the resins would be useful to direct the design of material to meet different requirements of applications. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

8.
Thermosetting phenolic resins, bearing varying extents of propargyl ether groups (PN resins), have been synthesized by the Williamson reaction of a novolac with propargyl bromide and the products characterized. The resin precursors were cured through Claisen rearrangement of the propargyl ether groups and thermal polymerization. The activation energy for thermal cure is substantially lower than that of model bispropargyl ether compounds but is quite independent of the degree of functionalization. The isothermal cure profile, extrapolated from non‐isothermal DSC kinetics studies is consistent with the results from DMA studies. The mechanical properties of glass composites of the resins, of varying propargyl contents, reveal good consolidation of the interphases, evident from the initial gain in both interlaminar shear strength (ILSS) and flexural strength. The benefits of better resin–reinforcement interactions are not retained on crosslinking the resin further, wherein the composite fails by a combination of fibre debonding and brittle fracture of the matrix. Although the resins show better thermal stability than cured resoles, a higher extent of propargylation is detrimental for the thermal stability. Resins with moderate propargylation show good mechanical and thermal properties. © 2001 Society of Chemical Industry  相似文献   

9.
Bio‐based high performance thermosetting resins have been urgently required by cutting‐edge fields for meeting sustainable development. A new kind of high performance thermosetting resins (BA‐n) with good processability, high thermal resistance, and mechanical properties was developed based on 4,4′‐bismaleimidodiphenylmethane (BDM) and renewable bis(5‐allyloxy)‐4‐methoxy‐2‐methylphenyl)methane (ABE) from bio‐based lignin derivative. The effect of the molar ratio of allyl to imide (n) on structures and properties of BA resins were systematically researched. BA‐n resins have much better processability, thermal, and mechanical properties than their petroleum‐based counterparts, 2,2′‐diallylbisphenol A‐modified BDM (BD‐n) resins. Compared with BD‐0.86, the best available bismaleimide (BMI) resin, BA‐0.86 not only has 6 h longer process window and 13.7 °C higher glass transition temperature, but also owns the highest flexural strength and modulus among all bio‐based allyl compound‐modified BMI resins reported. The origin behind these attractive performances of BA resins is revealed by discussing the unique crosslinked structure. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45947.  相似文献   

10.
Two novel propargylether‐terminated resins containing pyridine and bulky phenyl pendent group were prepared from propargyl bromide and different diphenols, and highly thermal stable polymers were obtained by the thermal cure of the monomers. The chemical structures of these novel monomers were well confirmed by FTIR, 1H‐NMR and elemental analysis. Curing and thermal behavior of the resins were investigated using differential scanning calorimetry (DSC) and dynamic thermogravimetry in argon atmosphere. DSC curves of these two monomers showed a single endothermic peak corresponding to the conformation of chromene ring and homopolymerization of the chromene ring. The temperature at 5% weight loss (Td5) was higher than 440°C under argon and the highest glass transition temperature (Tg) reached 362°C. The rheological behavior and solubility of the monomer were also investigated. The monomers showed excellent flow‐ability, broad processing window, and great solubility. These results showed that the two resins could be ideal candidates for high‐temperature resistant resins. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40469.  相似文献   

11.
Binary blends composed of 4,4′‐bis(3,4‐dicyanophenoxy)biphenyl (biphenyl PN) and diglycidyl ether of bisphenol A (epoxy resin) and oligomeric n = 4 phthalonitrile (n = 4 PN) and epoxy resin were prepared. The cure behavior of the blends was studied under dynamic and isothermal curing conditions using differential scanning calorimetry, simultaneous thermogravimetric/differential thermal analysis, infrared spectroscopy, and rheological analysis. The studies revealed that phthalonitrile‐epoxy blends exhibited good processability and that they copolymerized with or without the addition of curing additive. In the absence of curing additive, the blends required higher temperatures and longer cure times. The thermal and dynamic viscoelastic properties of amine‐cured phthalonitrile‐epoxy copolymers were examined and compared with those of the neat epoxy resin. The properties of the epoxy resin improved with increasing biphenyl PN content and with n = 4 PN addition. Specifically, the copolymers exhibited higher glass transition temperatures, increased thermal and thermo‐oxidative stabililty, and enhanced dynamic mechanical properties relative to the commercially available epoxy resin. The results showed that the phthalonitrile‐epoxy blends and copolymers have an attractive combination of processability and high temperature properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
N‐(4‐hydroxyphenyl)maleimide was melt‐blended with the glycidyl ether of bisphenol‐A and various mole percentages of 4, 4′‐(diaminodiphenylsulfone) bismaleimide. The cure behaviour of the resins was evaluated by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). The blends showed distinct reductions in the onset of cure (To) and peak exothermic (Texo) temperatures. The blends cured at low temperatures exhibited glass transition temperatures (Tgs) higher than the cure temperatures. The cured blends showed high moduli, glass transition temperatures in excess of 250 °C and good thermal stabilities up to 400 °C. Copyright © 2005 Society of Chemical Industry  相似文献   

13.
In this paper, we present a study on the properties of epoxy resins blended with copolyethersulfones. Several copolyethersulphones were synthesized by varying the molecular weights and the end groups. The obtained thermoplastics were then mixed with diglycidyl ether of biphenol A (DGBEA) (15% wt ratio), cured with methylene bis(2,6‐diethylanine) (MDEA), and the resulting blends characterized by the use of dynamic thermal mechanical analysis (DMTA), rheometry, and fracture mechanics tests. The morphology of the blends was studied by the use of scanning electron microscopy (SEM). The different molecular weights of the copolymers had a significant effect on the rheological and thermomechanical properties of the resins, as well as the different end groups on the reaction rate and on the thermomechanical properties of the blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 250–257, 2006  相似文献   

14.
Mingcun Wang  Liuhe Wei 《Polymer》2005,46(21):9202-9210
This paper reports a novel methylol and propargyl-containing dual-cure-mechanism novolac-based phenolic resin (MPN). MPN resins with varying contents of reactive groups were synthesized by a two-step one-pot method facilly and characterized by Flourier transfer infrared spectra (FT-IR), hydrogen magnetic resonance spectra (1H NMR), gel permeation chromatography (GPC), dynamic scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) techniques. The resins could be thermally cured by two gradual but fused stages: Condensation of methylol groups and addition polymerization of propargyl groups. This novel resin has advantages over conventional condensation-cure and addition-cure phenolic resins in processing capability. The results of DMA and thermogravimetry analysis (TGA) showed the cured resins possessed high thermal properties. Evaluation of MPN as matrices for advanced composites indicated the enhanced crosslink network derived from dense reactive groups in one single molecule was beneficial to the admirable thermal stability, but was detrimental to the mechanical properties of the resultant composites. MPN resin was amongst ideal candidates for matrices of high temperature materials.  相似文献   

15.
Cyanate esters are a class of thermal resistant polymers widely used as thermal resistant and electrical insulating materials for electric devices and structural composite applications. In this article, the effect of 2,2′‐diallyl bisphenol A (DBA) on catalyzing the thermal curing of cyanate ester resins was studied. The curing behavior, thermal resistance, and thermal mechanical properties of these DBA catalyzed cyanate ester resins were characterized. The results show that DBA is especially suitable for catalyzing the polymerization of the novolac cyanate ester resin (HF‐5), as it acts as both the curing catalyst through depressing the exothermic peak temperature (Texo) by nearly 100°C and the toughening agent of the novolac cyanate ester resin by slightly reducing the elastic modulus at the glassy state. The thermogravimetric analysis and dynamic mechanical thermal analysis show that the 5 wt % DBA‐catalyzed novolac cyanate ester resin exhibits good thermal resistance with Td5 of 410°C and the char yield at 900°C of 58% and can retain its mechanical strength up to 250°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1775–1786, 2006  相似文献   

16.
The rheological and thermomechanical behaviors of toughened epoxy resins filled with thermosetting microsized spherical particles were investigated. Two epoxy systems were used to prepare microspheres: a Bisphenol A‐type resin (EPON825) cured with 2,4‐diaminotoluene and a Bisphenol F‐based epoxy resin (PY306) crosslinked with diethyltoluenediamine. Both systems of microspheres were synthesized through dispersion polymerization and differed to each other in size, as evidenced by morphological analysis. These microparticles were blended, in different weight percents (10 and 20 wt%), with a matrix consisting of diglycidyl ether of Bisphenol A (EPON828) and 3,3′‐diaminodiphenylsulphone (3,3′DDS). Rheological behavior of the prepared blends was preliminarily studied. After cure, the dynamic‐mechanical properties of the composites were also investigated. Results indicated that the reactivity of the uncured blends, as well as the viscoelastic properties of crosslinked systems, are influenced not only by the nature and the amount of the microparticles introduced, but also, in a significant way, by their size. POLYM. ENG. SCI. 46:1739–1747, 2006. © 2006 Society of Plastics Engineers.  相似文献   

17.
A new bismaleimide monomer, 2‐((4‐maleimidophenoxy)methyl)‐5‐(4‐maleimidophenyl)‐1,3,4‐oxadiazole (Mioxd), was designed and synthesized. The chemical structure of the monomer was confirmed by means of Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance (1H NMR) spectroscopy and elemental analysis, and its thermal properties were characterized using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Mioxd as a reactive modifier was blended with epoxy resin based on bisphenol A diglycidyl ether (DGEBA) in weight ratio of 5, 10, and 15%, using 4,4′‐diaminodiphenyl sulfone (DDS) as hardener. The effect of Mioxd addition on the cure behavior and thermal properties of the blend resins was studied by DSC, TGA, and dynamic mechanical analysis (DMA). DSC investigations showed that the main exothermic peak temperature (Tp) of the blend systems did not obviously shift with increasing Mioxd content whereas a new shoulder appeared and gradually grew on the high temperature side of the exothermic peak. The results of DMA measurements exhibited the glassy storage modulus (G') and glass transition temperatures (Tg) increased as the Mioxd content was increased, the cured blends investigated were miscible and no phase separation occurred. Further, the thermal decomposition temperature first decreased and then increased, but the char yield at 600°C increased with an increase in Mioxd content. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

18.
Biodegradable blends of poly(propylene carbonate) (PPC) and poly(ethylene‐co‐vinyl alcohol) (EVOH) were melt compounded in a batch mixer followed by compression molding. The processability, mechanical properties, thermal behavior, and morphologies of the blends were investigated with torque rheometer, Fourier transform infrared spectroscopy, tensile tests, dynamic mechanical analysis, thermogravimetric analysis, differential scanning calorimetry, and scanning electron microscopy. Torque rheometry indicated good interfacial miscibility between PPC and EVOH phases, and then fourier transform infrared spectroscopy spectra demonstrated that a certain extent of hydrogen‐bonding interactions between PPC and EVOH matrix in the blends. A study of the mechanical properties and thermal behavior showed that the EVOH incorporation can significantly enhance the tensile strength, thermal stability, and crystallinity of the blends. Moreover, dynamic mechanical analysis and differential scanning calorimetry both revealed that PPC and EVOH were compatible to some extent. Further, scanning electron microscopic examination also revealed the good interfacial adhesion between EVOH and PPC phases. POLYM. ENG. SCI., 47:174–180, 2007. © 2007 Society of Plastics Engineers  相似文献   

19.
In this article, the dynamic vulcanization process was applied to polypropylene (PP)/Novolac blends compatibilized with maleic anhydride‐grafted PP (MAH‐g‐PP). The influences of dynamic cure, content of MAH‐g‐PP, Novolac, and curing agent on mechanical properties of the PP/Novolac blends were investigated. The results showed that the dynamically cured PP/MAH‐g‐PP/Novolac blend had the best mechanical properties among all PP/Novolac blends. The dynamic cure of Novolac improved the modulus and stiffness of the PP/Novolac blends. The addition of MAH‐g‐PP into dynamically cured PP/Novolac blend further enhanced the mechanical properties. With increasing Novolac content, tensile strength, flexural modulus, and flexural strength increased significantly, while the elongation at break dramatically deceased. Those blends with hexamethylenetetramine (HMTA) as a curing agent had good mechanical properties at HMTA content of 10 wt %. Scanning electron microscopy (SEM) analysis showed that dynamically cured PP/MAH‐g‐PP/Novolac blends had finer domains than the PP/MAH‐g‐PP/Novolac blends. Thermogravimetric analysis (TGA) results indicated that the incorporation of Novolac into PP could improve the thermal stability of PP. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

20.
Acrylic acid carboxylated acrylic rubber (ACM) and itaconic acid carboxylated acrylic rubber were prepared by 60Co‐γ‐ray‐induced emulsion copolymerization. The polymers were characterized using FTIR and 13C NMR spectroscopies. The acid value was determined with nonaqueous titration method. The molecular weight and the polydispersity index of the polymers were measured using gel permeation chromatography. The influence of the cure‐site (carboxyl) on the vulcanization and mechanical properties of the ACM was researched by means of rheometric study, gel fraction analysis, mechanical property tests, and dynamic mechanical thermal analysis. The results show that the crosslink density of polymers increases with amounts of the carboxyl cure‐site. The itaconic acid carboxylated ACM has better cure characteristics and mechanical properties than the acrylic acid carboxylated ACM has. In addition, the comparison of ACM prepared by 60Co‐γ‐ray‐induced polymerization with ACM prepared by chemical‐initiator‐induced polymerization has been investigated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5587–5594, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号