首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quaternary plasticized solid polymer electrolyte (SPE) films composed of poly(ethylene oxide), LiClO4, Li1.3Al0.3Ti1.7(PO4)3, and either ethylene carbonate or propylene carbonate as plasticizer (over a range of 10–40 wt%) were prepared by a solution‐cast technique. X‐ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) indicated that components such as LiClO4 and Li1.3Al0.3Ti1.7(PO4)3 and the plasticizers exerted important effects on the plasticized quaternary SPE systems. XRD analysis revealed the influence from each component on the crystalline phase. DSC results demonstrated the greater flexibility of the polymer chains, which favored ionic conduction. SEM examination revealed the smooth and homogeneous surface morphology of the plasticized polymer electrolyte films. EIS suggested that the temperature dependence of the films' ionic conductivity obeyed the Vogel–Tamman–Fulcher (VTF) relation, and that the segmental movement of the polymer chains was closely related to ionic conduction with increasing temperature. The pre‐exponential factor and pseudo activation energy both increased with increasing plasticizer content and were maximized at 40 wt% plasticizer content. The charge transport in all polymer electrolyte films was predominantly reliant on lithium ions. All transference numbers were less than 0.5. Copyright © 2006 Society of Chemical Industry  相似文献   

2.
《Ceramics International》2020,46(15):23695-23705
Solid electrolytes are the key component in designing all-solid-state batteries. The Li1.3Al0.3Ti1.7(PO4)3 (LATP) structure and its derivatives obtained by doping various elements at Ti and Al site acts as good solid electrolytes. However, there is still scope for enhancing the ionic conductivity using simple precursors and preparation methods. In this study, the Li superionic conductors Li1.3Al0.3Ti1.7-xZrx(PO4)3 (LATZP) with 0 ≤ x ≤ 0.2 have been successfully prepared by the solid-state reaction route. The structural, morphological, and ionic transport properties were analyzed using several experimental techniques including powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and impedance spectroscopy (IS). The presence of two relaxation processes corresponding to grain and grain boundary was studied using various formalisms. We have observed that grain effects dominate at lower temperatures (<100 °C) while the grain boundary at higher temperatures (> 200 °C) on ionic conductivity. The relaxation mechanisms of grain and grain boundaries were investigated by the Summerfield scaling of AC conductivity. The highest total ionic conductivity of 2.48 × 10-4 S/cm at 150 °C and 5.50 × 10-3 S/cm at 250 °C was obtained for x = 0.1 in Li1.3Al0.3Ti1.6Zr0.1(PO4)3 sintered at 950 °C/6 h in the air. The ionic conductivity value was found to be higher than the ionic conductivity reported for LATP prepared via solid-state reaction mechanism using the same precursors and conditions.  相似文献   

3.
Polyethylene oxide (PEO) based-solid polymer electrolytes were prepared with low weight polymers bearing carboxylic acid groups added onto the polymer backbone, and the variation of the conductivity and performance of the resulting Li ion battery system was examined. The composite solid polymer electrolytes (CSPEs) were composed of PEO, LiClO4, PAA (polyacrylic acid), PMAA (polymethacrylic acid), and Al2O3. The addition of additives to the PEO matrix enhanced the ionic conductivities of the electrolyte. The composite electrolyte composed of PEO:LiClO4:PAA/PMAA/Li0.3 exhibited a low polarization resistance of 881.5 ohms in its impedance spectra, while the PEO:LiClO4 film showed a high value of 4,592 ohms. The highest ionic conductivity of 9.87 × 10−4 S cm−1 was attained for the electrolyte composed of PEO:LiClO4:PAA/PMAA/Li0.3 at 20 °C. The cyclic voltammogram of Li+ recorded for the cell consisting of the PEO:LiClO4:PAA/PMAA/Li0.3:Al2O3 composite electrolyte exhibited the same diffusion process as that obtained with an ultra-microelectrode. Based on this electrolyte, the applicability of the solid polymer electrolytes to lithium batteries was examined for an Li/SPE/LiNi0.5Co0.5O2 cell.  相似文献   

4.
To study the effect of the silica content on the properties of the salt‐free and salt‐added hybrids based on poly(ethylene oxide) (PEO) and silica, two series of hybrids, PEO–silica and PEO–silica–LiClO4 (O:Li, 9:1) hybrids were prepared via the in situ acid‐catalyzed sol–gel reactions of the precursors [i.e., PEO functionalized with triethoxysilane and tetraethyl orthosilicate (TEOS)]. The morphology of the hybrids was examined by scanning electron microscopy (SEM) of the fracture surfaces of the hybrid. The results indicated that the discontinuity develops with increasing the weight percent of silica in both hybrids. The differential scanning calorimetric (DSC) analysis indicated that effects of silica content on the glass transition temperatures (Tg) of the PEO phase were different in salt‐free and salt‐added hybrids. The Tg of PEO phase increased with increasing weight percent of silica in salt‐free hybrids, whereas the curve of Tg of PEO phase and silica content had a maximum at 35 wt % of silica content in salt‐added hybrids. For both salt‐free and salt‐added hybrids, peaks of the loss tangent, determined by dynamic mechanical analysis (DMA) were gradually broadened and lowered with increasing weight percent of silica. The storage modulus, E′, in the region above Tg increases with increasing silica content for both PEO–silica and PEO–silica–LiClO4 hybrids. In the conductivity and composition curves for PEO–silica–LiClO4 hybrids, the conductivity shows a maximum value of 3.7 × 10?6 S/cm, corresponding to the sample with a 35 wt % of silica. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2471–2479, 2001  相似文献   

5.
NaSICON-type lithium conductor Li1.3Al0.3Ti1.7(PO4)3 (LATP) is synthesized with controlled grain size and composition using solution chemistry. After thermal treatment at 850 °C, sub-micronic crystallized powders with high purity are obtained. They are converted into ceramic through Spark Plasma Sintering at 850–1000 °C. By varying the processing parameters, pellet with conductivities up to 1.6 × 10?4 S/cm with density of 97% of the theoretical density have been obtained. XRD, FEG-SEM, ac-impedance and Vickers indentation were used to characterize the products. The influence of sintering parameters on pellet composition, microstructure and conductivity is discussed in addition to the analysis of the mechanical behavior of the grains interfaces.  相似文献   

6.
《Ceramics International》2022,48(1):157-163
NASICON-type structured compounds Li1+xMxTi2-x(PO4)3 (M = Al, Fe, Y, etc.) have captured much attention due to their air stability, wide electrochemical window and high lithium ion conductivity. Especially, Li1.3Al0.3Ti1.7(PO4)3 (LATP) is a potential solid electrolyte due to its high ionic conductivity. However, its actual density usually has a certain gap with the theoretical density, leading the poor ionic conductivity of LATP. Herein, LATP solid electrolyte with series of SnO–P2O5–MgO (SPM, 0.4 wt%, 0.7 wt%, 1.0 wt%, 1.3 wt%) glass addition was successfully synthesized to improve the density and ionic conductivity. The SPM addition change Al/Ti–O bond and P–O bond distances, leading to gradual shrinkage of octahedral AlO6 and tetrahedral PO4. The bulk conductivity of the samples increases gradually with SPM glass addition from 0.4 wt% to 1.3 wt%. Both SPM and the second-phase LiTiPO5, caused by glass addition, are conducive to the improvement of compactness. The relative density of LATP samples increases first from 0 wt% to 0.7 wt%, and then decreases from 0.7 wt% to 1.3 wt% with SPM glass addition. The grain boundary conductivity also changes accordingly. Especially, the highest ionic conductivity of 2.45 × 10?4 S cm?1, and a relative density of 96.72% with a low activation energy of 0.34 eV is obtained in LATP with 0.7 wt% SPM. Increasing the density of LATP solid electrolyte is crucial to improve the ionic conductivity of electrolytes and SPM glass addition can promote the development of dense oxide ceramic electrolytes.  相似文献   

7.
《Ceramics International》2019,45(12):14663-14668
The Na+ super-ionic conductor (NASICON) type solid electrolytes Li1.3Al0.3Ti1.7(PO4)3 (LATP) are of increasing interest because of their high total ionic conductivity and excellent stability against moist air. However, they are not stable when contacting with lithium metal because of the rapid Ti4+ reduction by Li metal, which greatly restrict their application in lithium batteries. Here, we propose a Al2O3-doped ZnO (AZO) surface coating method by magnetron sputtering to improve the stability of the Li1.3Al0.3Ti1.7(PO4)3 electrolyte against the attack of lithium-metal anode and to avoid the growth of lithium dendrite. The Al2O3-doped ZnO coating of the electrolyte Li1.3Al0.3Ti1.7(PO4)3 demonstrates high chemical stability against the attack of lithium-metal in a wide electrochemical potential ranges (>5 V), as well as an excellent performance of suppressing of lithium dendrites. Furthermore, the Al2O3-doped ZnO coated Li1.3Al0.3Ti1.7(PO4)3 was found to be the candidate electrolyte for the all-solid-state lithium battery. An all-solid-state Li/LiFePO4 battery with Al2O3-doped ZnO coated Li1.3Al0.3Ti1.7(PO4)3 as the solid electrolyte shows good cyclability and a high columbic efficiency for 50 charge/discharge cycles. Furthermore, the surface-modified electrolyte Li1.3Al0.3Ti1.7(PO4)3 by Al2O3-doped ZnO coating also enables the lithium metal battery to exhibit extremely long cycling for nearly 1000 h due to the ability of suppressing of lithium dendrites.  相似文献   

8.
The work presents the investigations of Li1.3Al0.3Ti1.7(PO4)3-xLiF Li-ion conducting ceramics with 0 ≤ x ≤ 0.3 by means of X-ray diffractometry (XRD), 7Li, 19F, 27Al and 31P Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectroscopy, thermogravimetry (TG), scanning electron microscopy (SEM), impedance spectroscopy (IS) and density method. It has been shown that the total ionic conductivity of both as-prepared and ceramic Li1.3Al0.3Ti1.7(PO4)3 is low due to a grain boundary phase exhibiting high electrical resistance. This phase consists mainly of berlinite crystalline phase as well as some amorphous phase containing Al3+ ions. The electrically resistant phases of the grain boundary decompose during sintering with LiF additive. The processes leading to microstructure changes and their effect on the ionic properties of the materials are discussed in the frame of the brick layer model (BLM). The highest total ionic conductivity at room temperature was measured for LATP-0.1LiF ceramic sintered at 800 °C and was equal to σtot = 1.1 × 10−4 S cm−1.  相似文献   

9.
In this research, influence of incorporating LiClO4 salt on the crystallization, conformation, and ionic conductivity of poly(ethylene oxide) (PEO) in its miscible blend with poly(methyl methacrylate) (PMMA) is studied. Differential scanning calorimetry showed that the incorporation of salt ions into the blend suppresses the crystallinity of PEO. The X‐ray diffraction revealed that the unit‐cell parameters of the crystals are independent of the LiClO4 concentration despite of the existence of ionic interactions between PEO and Li cations. In addition, the complexation of the Li+ ions by oxygen atoms of PEO is investigated via Fourier transform infrared spectroscopy. The conformational changes of PEO segments in the presence of salt ions are studied via Raman spectroscopy. It is found that PEO chains in the blend possess a crown‐ether like conformation because of their particular complexation with the Li+ ions. This coordination of PEO with lithium cations amorphize the PEO and is accounted for suppressed crystallinity of PEO in the presence of salt ions. Finally, electrochemical impedance spectroscopy is used to characterize the ionic conductivity of PEO in the PEO/PMMA/LiClO4 ternary mixture at various temperatures. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
The transparent and flexible solid polymer electrolytes (SPEs) were fabricated from polyacrylonitrile‐polyethylene oxide (PAN‐PEO) copolymer which was synthesized by methacrylate‐headed PEO macromonomer and acrylonitrile. The formation of copolymer is confirmed by Fourier‐transform infrared spectroscopy (FTIR) measurements. The ionic conductivity was measured by alternating current (AC) impedance spectroscopy. Ionic conductivity of PAN‐PEO‐LiClO4 complexes was investigated with various salt concentration, temperatures and molecular weight of PEO (Mn). And the maximum ionic conductivity at room temperature was measured to be 3.54 × 10?4 S/cm with an [Li+]/[EO] mole ratio of about 0.1. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 461–464, 2006  相似文献   

11.
The potential of poly(ethylene oxide) (PEO) and 49% poly(methyl methacrylate) grafted natural rubber (MG49) as a polymer host in solid polymer electrolytes (SPE) was explored for electrochemical applications. PEO–MG49 SPEs with various weight percentages of lithium perchlorate salt (LiClO4) was prepared with the solution casting technique. Characterization by scanning electron microscopy, Fourier transform infrared spectroscopy, and impedance spectroscopy was done to investigate the effect of LiClO4 on the morphological properties, chemical interaction, and ionic conductivity behavior of PEO–MG49. Scanning electron microscopy analysis showed that the surface morphology of the sample underwent a change from rough to smooth with the addition of lithium salts. Infrared analysis showed that the interaction occurred in the polymer host between the oxygen atom from the ether group (C? O? C) and the Li+ cation from doping salts. The ionic conductivity value increased with the addition of salts because of the increase in charge carrier up to the optimum value. The highest ionic conductivity obtained was 8.0 × 10?6 S/cm at 15 wt % LiClO4. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
BACKGROUND: Polymer electrolytes have attracted considerable attention as regards portable solid‐state electrochemical device applications. The present investigation is focused on the characterization of a new Na+ ion conducting polymer electrolyte (PEO)6:NaPO3 dispersed with 3–10 wt% BaTiO3 (0.7 µm) fillers. The composite polymer electrolytes (CPEs) were prepared by a solution‐casting method and characterized using various physical measurement techniques. RESULTS: Differential scanning calorimetry results indicate a maximum reduction in the degree of crystallinity of the polymer from 62.6% for uncomplexed poly(ethylene oxide) (PEO) to 27.6% for the CPE with 6 wt% BaTiO3. This substantiates an enhancement in the amorphous phase of the polymer inferred from X‐ray diffraction and optical micrographs. The CPE dispersed with 6 wt% BaTiO3 is found to be the best composition exhibiting a maximum ionic conductivity of 1.2 × 10?6 S cm?1 at 345 K with cationic transport number (t) of 0.33. CONCLUSIONS: An enhancement in the ionic conductivity of about two orders of magnitude is achieved for the composite electrolytes when compared to filler‐free solid polymer electrolyte. Correlation of the temperature‐dependent conductivity, activation energy for ion migration and transport number enables an understanding of the role played by the fillers in conduction characteristics of the CPEs. Copyright © 2007 Society of Chemical Industry  相似文献   

13.
A novel approach is proposed to design high-quality NASICON–type solid-state electrolytes (SSEs) based on Li1.3Al0.3Ti1.7(PO4)3 (LATP) by incorporating nanoparticles into a matrix of microparticles, which could efficiently improve densification of LATP SSEs by sintering. Moreover, LATP SSEs with bimodal microstructures are obtained by tuning mass ratio of 60 nm and 600 nm ceramic particles, which are fabricated by sol-polymer and molten quenching methods, respectively. The LATP SSE containing 60 nm and 600 nm particles with the mass ratio of 10%/90% displays a high ionic conductivity of (5.93 ± 0.24)× 10−4 S/cm at room temperature and relative density of 95.5 ± 1.1% after sintering at 900 °C for 6 h. Besides, the Li||LATP||Li symmetric cell with the mass ratio of 10%/90% exhibits better cyclic stability with a steady polarization voltage of 121.2 mV than that of other ratios. Therefore, SSEs with multimodal microstructures pave a promising venue for practical application of high-energy-density and safe solid-state Li metal battery.  相似文献   

14.
The sample preparation pathway of solid polymer electrolytes (SPEs ) influences their thermal properties, which in turn governs the ionic conductivity of the materials especially for systems consisting of a crystallizable constituent. Majority of poly(ethylene oxide) (PEO)‐based SPEs with molar masses of PEO well above 104 g mol?1 (where PEO is crystallizable and should reach an asymptote in thermal behaviour) display molar mass dependence of the thermal properties and ionic conductivities in non‐equilibrium conditions, as reported in the literature. In this study, PEO of different viscosity‐molar masses (M η = 3 × 105, 6 × 105, 1 × 106, 4 × 106 g mol?1) and LiClO4 salt (0 to 16.7 wt%) were used. The SPEs were thermally treated under inert atmosphere above the melting temperature of PEO and then cooled down for subsequent isothermal crystallization for sufficient experimental time to develop morphology close to equilibrium conditions. The thermal properties (e.g. glass transition temperature, melting temperature, crystallinity) according to differential scanning calorimetry and the ionic conductivity obtained from impedance spectroscopy at room temperature (σ DC ~ 10?6 S cm?1) demonstrate insignificant variation with respect to the molar mass of PEO at constant salt concentration. These findings are in agreement with the PEO crystalline structures using X‐ray diffraction and ion ? dipole interaction by Fourier transform infrared results. © 2017 Society of Chemical Industry  相似文献   

15.
Increasing demand for safe energy storage and portable power sources has led to intensive investigation for all-solid state Li-ion batteries and particularly to solid electrolytes for such rechargeable batteries. One of the most promising types of solid electrolytes is NASICON-structured Li1.3Al0.3Ti1.7(PO4)3 (LATP) due to its relatively high ionic conductivity and stability towards air and moisture. Here, the work is aimed on implementing the steps to hinder formation of impurity phases reported for various synthesis routes. Consequently, the applied modifications in the preparation strategies alter a crystal shape and size of prepared material. These two parameters have an enormous impact on properties of LATP. Fabrication of larger particles with a cubic shape significantly improves its ionic conductivity. As a result, LATP preparation methods such as a solution chemistry and molten flux resulted in the highest ionic conductivity samples with the value of ~10?4 S cm?1 at room temperature. Other LATPs obtained by solid-state reaction, sol-gel and spray drying methods depicted the ionic conductivity of ~10?5 S cm?1. The activation energy of lithium ion transfer in LATP varied in a range of 0.25–0.4 eV, which is in well agreement with the previously reported data.  相似文献   

16.
In the material of xLi2MnO3 ·(1-x) LiMO2 (0 < x < 1), the Li2MnO3 component is used to stabilize the layered LiMO2 structure. However, the electrochemical inactive Li2MnO3 makes Li-ion diffusion difficult, leading to a sluggish rate capability. In this work, Li1.3Ti1.7Al0.3(PO4)3 (LTA0.3), a NASICON-type Li-ion conductor, is applied to modified Li1.2Mn0.54Ni0.13Co0.13O2 to overcome the above shortcoming. Additionally, the Li-ion conductivity of LiTi2(PO4)3 can be improved effectively by replacing tetravalent cation Ti4+ with trivalent Al3+ at the optimal ratio. At 1C rate, the LR cathode with 3 wt% LTA0.3 delivers 200 mAh g?1 after 170 cycles and maintains 140 mAh g?1 after 500 cycles. Moreover, the modified cathode shows an enhanced rate performance of 169.7 mAh g?1 at 5C. Enhanced cycle durability and rate capability are aroused by the 3D skeletal framework of LTA0.3, which is suitable for Li-ion diffusion. The LTA0.3 coating layer displays a robust shell which not only avoids the corrosion of electrode materials but also effectively facilitates Li-ion diffusion.  相似文献   

17.
A new class of ionic conducting organic/inorganic hybrid composite electrolyte with high conductivity, better electrochemical stability and mechanical behavior was prepared through the sol–gel processing between ethylene‐bridged polysilsesquioxane and poly(ethylene glycol) (PEG). The composite electrolyte with 0.05 LiClO4 per PEG repeat unit has the best conductivity up to 10?4 S/cm at room temperature with the transference number up to 0.48 and an electrochemical stability window as high as 5.5 V versus Li/Li+. Moreover, the effect of the PEG chain length on the properties of the composite electrolyte has also been studied. The interactions between ions and polymer have also been investigated for the composite electrolyte in the presence of LiClO4 by means of FTIR, DSC, and TGA. The results indicated the interaction of Li+ ions with the ether oxygen of the PEG, and the formation of transient crosslinking with LiClO4, resulting in an increase of the Tg of the composite electrolyte. The VTF‐type behavior of the ionic conductivity implied that the diffusion of the charge carriers was assisted by the segmental motions of the polymer chains. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2752–2758, 2007  相似文献   

18.
Composition, temperature and humidity dependence of ionic conductivity in polyethylene oxide (PEO):NH4ClO4 polymer electrolyte composite obtained by the dispersal of Al2O3 is reported. The dispersal of Al2O3 introduces significant changes in the conductivity vs. composition isotherm. The conductivity of the composite peaks at two concentrations of Al2O3 is ~2 × 10?5 S cm?1. For studying ion dynamics, motional narrowing of 1H NMR line with temperature is also reported. In PEO:NH4ClO4 (without dispersed Al2O3), two 1H frequency-shifted NMR lines are seen (one of these have been assigned to the 1H belonging to –CH2–CH2– chain of the polymer and the other to NH4 + complexed with the chain). For the (PEO:NH4ClO4) + Al2O3 composites, however, one additional narrow peak is also seen at temperatures higher than 40 °C. This has been interpreted in terms of some hopping H+ ions getting loosely bonded to Al2O3, forming Al(OH)3, which possibly releases an additional mobile protonic species (OH?).  相似文献   

19.
High molecular weight polyoxyethylene (PEO) was synthesized by using a quaternary catalyst composed of triisobutyl aluminum, phosphoric acid, water, and N,N‐dimethylaniline (DMA). Optimum synthesis conditions and some properties of the product were studied. This catalyst showed high activity and the molecular weight of the polyoxyethylene obtained can approach one million. The activity of polymerization mainly depends upon the composition of catalyst. The optimum composition is as follows: i‐Bu3Al:H3PO4:H2O:DMA = 1 : 0.17 : 0.17 : 0.10–0.15 (molar ratio).The active centers of the catalyst was thus proposed. The high molecular weight PEO synthesized by this catalyst was blended with poly(2‐vinyl pyridine) (PVP) and then doped with LiClO4 and TCNQ to obtain a conductive elastomeric material. Ionic, electronic, and mixed (ionic–electronic) conductivities of blends were investigated. At a Li/EO molar ratio of 0.1 and a TCNQ/VP molar ratio of 0.5, the mixed conductivity of the blend of PEO/PVP/LiCIO4/TCNQ is higher than the sum of ionic conductivity of PEO/PVP/LiCIO4 and electronic conductivity of PEO/PVP/TCNQ, when the weight ratio of PEO to PVP is 6/4 or 5/5. It can reach 4 × 10?6 S/cm at room temperature. Differential scanning calorimetry, thermal gravimetric analysis, and the appearance of the blend showed that both TCNQ and LiClO4 can complex with PEO and PVP, thus enhancing the compatibility between PEO and PVP. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

20.
In this work, the influence of different thermal sintering treatments on Li1.3Al0.3Ti1.7(PO4)3 NASICON thick films has been investigated. The isostatic lamination step performed before the thermal sintering of thick films has demonstrated to improve film density and grain size, increasing "bulk" and grain boundary Li-conductivities. The confocal Raman spectroscopy characterization allowed the observation of the connectivity of the particles present in the ceramic samples and so a deeper understanding of ionic conductivity. The dependence of total and "bulk" Li conductivity on the samples microstructure is discussed. The films sintered by slow heating sintering with a previous lamination step, displayed an overall Li- conductivity >10?4 Ω-1 cm-1, that is superior to that reported in commercial OHARA Li- NASICON glass ceramics. The tape casting deposition method is scalable for preparation of large area thick supported electrolyte films with high conductivity for novel Li ion all solid state batteries (ASSB) architectures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号