首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
采用数值模拟方法对振动诱导挤出熔融过程中振动参数的影响规律做了深入系统的研究。利用大型通用有限元软件ANSYS作为汁算机仿真平台,利用振动力场作用下聚合物依时性非线性粘弹特性和自行修正的具有松弛谱特性的Maxwell本构模型,对振动诱导挤出熔融过程在不同振动参数作用下的响应情况进行模拟分析。结果表明在一定振动参数范围内振动力场的引入有利于加速熔融进程。  相似文献   

2.
A finite piece method is proposed to simulate three‐dimensional slit flows in extrusion sheet dies in this paper. The simulations concern incompressible fluids obeying different constitutive equations: generalized Newtonian (Carreau‐Yasuda law), and viscoelastic Phan‐Thien Tanner (PTT) models. Numerical simulations are carried out for the isothermal and nonisothermal flows of polymer melt through sheet dies. The Picard iteration method is utilized to solve nonlinear equations. The results of the finite piece method are compared with the three‐dimensional (3D) finite element method (FEM) simulation and experiments. At the die exit, the relative error of the volumetric flow between the finite piece method and the 3D FEM is below 1.2%. The discrepancy of the pressure distributions does not exceed 6%. The Maximum error of the uniformity index between the simulations and experiments is about 2.3%. It shows that the solution accuracy of the finite piece method is excellent, and a substantial amount of computing time and memory requirement can be saved. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Numerical simulations have been undertaken for the film‐blowing process of viscoelastic fluids under different operating conditions. Viscoelasticity is described by an integral constitutive equation of the K‐BKZ type with a spectrum of relaxation times, which can fit the experimental data well for the shear and extensional viscosities and the normal stresses measured in shear flow. Nonisothermal conditions are considered by applying the Morland–Lee hypothesis, which incorporates the appropriate shift factor and pseudotime into the constitutive equation. The momentum and energy equations are expressed in the machine direction only by using a quasi‐one‐dimensional approach introduced earlier by Pearson and Petrie. The resulting system of differential equations is solved using the finite element method and the Newton‐Raphson iterative scheme. The method of solution was first checked against the Newtonian and Maxwell results for various film characteristics given earlier. The simulations are compared with available experimental data and previous simulations in terms of film shape, velocity, stresses, and temperature. The present results show that the existing modeling of force balances is inadequate for quantitative agreement with the experimental studies. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

4.
A model for investigating the melting process of polymer in a vibration‐induced single‐screw (VISS) extruder is presented. The key feature of this model is as follows: vibration force field is introduced into the overall course of extrusion by the axial vibration of the screw, and the velocity distribution in the polymer melt behaves strongly nonlinear and time‐dependent. To analyze this model, half‐open barrel visible experimental method and low‐density polyethylene material are adopted to investigate the effect of the vibration parameters on the melting process, which goes into further details of study and research on the melting mechanism, and thus, a novel physical melting model is derived. Combining the conservation equations of mass, movement, energy, and constitutive, analytical expressions of the melting rate, the energy consumption, the length of melting section, and the distribution of solid bed are obtained. This model enables the prediction of the processing and design parameters in the VISS extruders from which the optimum conditions for designing VISS extruder and polymer processing are obtained. The theory is supplemented by a calculation sample and experiment, which shows that the introduction of vibration force field can improve the melting capacity and decrease the power consumption of extruder greatly. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3860–3876, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号