首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simplified process for the primary recovery and purification of B‐phycoerythrin (BPE) from Porphyridium cruentum exploiting aqueous two‐phase systems (ATPS) and isoelectric precipitation was developed in order to reduce the number of unit operations and benefit from increased purity and yield of the protein product. Evaluation of the partitioning behaviour of BPE in polyethylene glycol (PEG)/sulphate, PEG/dextran and PEG/phosphate ATPS was carried out to determine under what conditions the BPE and contaminants concentrated into opposite phases. An additional stage of isoelectric precipitation at pH 4.0 after cell disruption resulted in an increase in purity of the target protein from the BPE crude extract and enhanced the performance of the subsequent ATPS. PEG1000/phosphate ATPS proved to be suitable after isoelectric precipitation for the recovery of highly purified (defined as absorbance ratio A545 nm/A280 nm > 4.0) BPE with a potential commercial value as high as US$ 50/mg. An ATPS extraction stage comprising 29.5% (w/w) PEG1000, 9.0% (w/w) phosphate, a volume ratio (Vr) equal to 1.0, a system pH of 7.0 and loaded with 40% (w/w) of the BPE extract generated by precipitation allowed BPE recovery with a purity of 4.1±0.2 and an overall product yield of 72% (w/w). The purity of BPE from the crude extract increased 5.9‐fold after isoelectric precipitation and ATPS. The results reported herein demonstrate the benefits of the practical application of isoelectric precipitation together with ATPS for the recovery and purification of BPE produced by P. cruentum as a first step in the development of a commercial purification process. Copyright © 2006 Society of Chemical Industry  相似文献   

2.
The potential use of aqueous two‐phase systems (ATPS) to establish a viable protocol for the in situ recovery of cyanobacterial products was evaluated. The evaluation of system parameters such as poly (ethylene glycol) (PEG) molecular mass, concentration of PEG and salt was carried out to determine the conditions under which Synechocystis sp. PCC 6803 cell and cyanobacterial products, i.e., β‐carotene and lutein, become concentrated in opposite phases. PEG‐phosphate ATPS proved to be unsuitable for the recovery of cyanobacterial products due to the negative effect of the salt upon the cell growth. The use of ATPS PEG‐dextran (6.6 % w/w PEG 3350, 8.4 % w/w dextran 66900, TLL 17.3 % w/w, VR 1.0, pH 7) and (4.22 % w/w PEG 8000, 9.77 % w/w dextran 66900, TLL 18 % w/w, VR 1.0, pH 7) resulted in the growth of cyanobacteria (Synechocystis sp. PCC 6803) and the concentration of lutein in opposite phases. However, β‐carotene was seen to concentrate in the top phase together with the biomass. The results reported here demonstrate the potential application of ATPS to establish the conditions for an extractive fermentation prototype process for the recovery of cyanobacterial products.  相似文献   

3.
A polymer–salt-based aqueous two-phase system (ATPS) was developed for the effective extraction and purification of extracellular β-xylosidase from the fermentation broth of recombinant Bacillus megaterium MS941. The effect of molecular weight (MW) of polyethylene glycol (PEG), tie-line length (TLL), volume ratio (VR), crude loading and pH on the recovery performance was evaluated. Under the optimal extraction conditions, β-xylosidase was successfully purified up to 23-fold with a recovery yield of 99% in the bottom salt-rich phase at PEG 4,000/potassium phosphate ATPS comprising TLL of 41.8, VR of 2.3, crude loading (CL) of 30% (w/w) at pH 6.  相似文献   

4.
BACKGROUND: PEGylation reactions often result in a heterogeneous population of conjugated species and unmodified proteins that presents a protein separations challenge. Aqueous two‐phase systems (ATPS) are an attractive alternative for the potential fractionation of native proteins from their PEGylated conjugates. The present study characterizes the partition behaviors of native RNase A and α‐Lac and their mono and di‐PEGylated conjugates on polyethylene glycol (PEG)—potassium phosphate ATPS. RESULTS: A potential strategy to separate unreacted native protein from its PEGylated species was established based upon the partition behavior of the species. The effect of PEG molecular weight (400–8000 g mol?1), tie‐line length (15–45% w/w) and volume ratio (VR; 0.33, 1.00 and 3.00) on native and PEGylated proteins partition behavior was studied. The use of ATPS constructed with high PEG molecular weight (8000 g mol?1), tie‐line lengths of 25 and 35% w/w, and VR values of 1.0 and 3.0 allowed the selective fractionation of native RNase A and α‐Lactalbumin, respectively, from their PEGylated conjugates on opposite phases. Such conditions resulted in an RNase A bottom phase recovery of 99%, while 98% and 88% of mono and di‐PEGylated conjugates, respectively were recovered at the top phase. For its part, α‐Lac had a bottom phase recovery of 92% while its mono and di‐PEGylated conjugates were recovered at the top phase with yields of 77% and 76%, respectively. CONCLUSIONS: The results reported here demonstrate the potential application of ATPS for the fractionation of PEGylated conjugates from their unreacted precursors. Copyright © 2010 Society of Chemical Industry  相似文献   

5.
BACKGROUND: The potential use of plants as production systems to establish bioprocesses has been established over the past decade. However, the lack of efficient initial concentration and separation procedures affect the generic acceptance of plants as economically viable systems. In this context the use of aqueous two‐phase systems (ATPS) can provide strategies to facilitate the adoption of plants as a base for bioprocesses. Among the crops, soybeans (Glycine max) represent an attractive alternative since potentially they can produce high levels of recombinant protein. In this paper the processing of fractionated soybean extracts using ATPS is evaluated as a first step to recover recombinant proteins expressed in plants, using β‐glucuronidase (GUS; E.C. 3.2.1.31) as a model protein. RESULTS: The evaluation of the effect of system parameters provided the conditions under which the contaminant proteins from fractionated soybean extracts and GUS concentrated in opposite phases. A PEG 600/phosphate system comprising 14.5% (w/w) polyethylene‐glycol (PEG), 17.5% (w/w) phosphate, a volume ratio (Vr) equal to 1.0, and a system pH of 7.0 resulted in the potential 83% recovery of GUS from the complex mixture and an increase in purity of 4.5‐fold after ATPS. CONCLUSIONS: The findings reported here demonstrate the potential of ATPS to process fractionated soybean extract as a first step to isolate and purify a recombinant protein expressed in soybeans. The proposed approach can simplify the way in which recombinant proteins expressed in plants can be recovered. Copyright © 2007 Society of Chemical Industry  相似文献   

6.
A novel process for the recovery of c‐phycocyanin from Spirulina maxima exploiting aqueous two‐phase systems (ATPS), ultrafiltration and precipitation was developed in order to reduce the number of unit operations and benefit from an increased yield of the protein product. The evaluation of system parameters such as PEG molecular mass, concentration of PEG as well as salt, system pH and volume ratio was carried out to determine under which conditions the c‐phycocyanin and contaminants concentrate to opposite phases. PEG1450–phosphate ATPS proved to be suitable for the recovery of c‐phycocyanin because the target protein concentrated in the top phase whilst the cell debris concentrated in the bottom phase. A two‐stage ATPS process with a phase volume ratio (Vr) equal to 0.3, PEG1450 7% (w/w), phosphate 20% (w/w) and system pH of 6.5 allowed c‐phycocyanin recovery with a purity of 2.4 (estimated as the relationship of the 620 nm to 280 nm absorbances). The use of ultrafiltration (with a 30 kDa membrane cut‐off) and precipitation (with ammonium sulfate) resulted in a recovery process that produced a protein purity of 3.8 ± 0.1 and an overall product yield of 29.5% (w/w). The results reported here demonstrated the practical implementation of ATPS for the design of a prototype recovery process as a first step for the commercial purification of c‐phycocyanin produced by Spirulina maxima. © 2001 Society of Chemical Industry  相似文献   

7.
BACKGROUND: Aqueous two‐phase extraction is a versatile method for separating biological particles and macromolecules. In the present wok, the feasibility of using PEG 4000/potassium citrate aqueous two‐phase system (ATPS) for recovering and purifying lysozyme was investigated. Response surface methodology was used to determine an optimized ATPS for purification of lysozyme from crude hen egg white. RESULTS: Mathematical models concerning the purification of lysozyme from chicken egg white in polyethylene glycol 4000 (PEG 4000)/potassium citrate ATPS are established using response surface methodology. Screening experiments using fractional factorial designs show that the pH of the system significantly affects the recovery and purification of lysozyme. An optimized ATPS was proved to be at pH 5.5 and 30 °C and contained 18% (w/w) PEG, 16% (w/w) potassium citrate, 3.75% (w/w) potassium chloride (KCl). Under those conditions, the specific activity, purification factor and activity yield for lysozyme were 31100 U mg?1, 21.11 and 103%, respectively. CONCLUSION: The PEG 4000/potassium citrate ATPS has the potential to be applied to establish bioprocesses for the primary recovery and partial purification of lysozyme. © 2012 Society of Chemical Industry  相似文献   

8.
In this study the use of an aqueous two‐phase system (ATPS) following the direct chemical extraction of a recombinant viral coat protein, from the cytoplasm of Escherichia coli, is evaluated. The driving force is the need to establish an economically‐viable process for the manufacture of a vaccine against human papilloma infection. The partition behaviour of recombinant L1 protein, the major structural protein of the virus, and DNA was investigated in a polyethylene glycol (PEG)–phosphate system. An evaluation of system parameters including PEG molecular mass and the concentrations of PEG and phosphate was conducted, to estimate conditions under which the L1 protein and DNA partition to opposite phases. ATPS extraction comprising a volume ratio of 1.00, PEG 1000 (18.0%(w/w)) and phosphate (15.0%(w/w)) provided the conditions for accumulation of DNA into the bottom phase and concentration of L1 protein into the opposite phase (ie partition coefficient of DNA; ln KDNA < 0.0 and partition coefficient of L1; ln KL1 > 2.5). The findings reported here demonstrate the potential of ATPS to recover recombinant protein released from E coli by direct chemical extraction. © 2002 Society of Chemical Industry  相似文献   

9.
In order to develop an aqueous two‐phase system (ATPS) for cephalexin synthesis with extractive bioconversion, the partitioning behaviour of cephalexin and 7‐aminodeacetoxicephalosporanic acid (7‐ADCA) in poly(ethylene glycol) (PEG)/salt ATPS were examined. Parameters such as PEG size, salt type and tie line length were investigated to find a primary extraction system. In PEG400/ammonium sulfate and PEG400/magnesium sulfate systems, the partition coefficient of cephalexin (KC) was larger than 1 while that of 7‐ADCA (KA) deviated about 1.5. Addition of neutral salts, surfactants and water‐miscible solvents were also investigated in the primary ATPS in order to improve the separation efficiency. KC greatly increased when neutral salts and surfactants were added to the PEG400/ammonium sulfate primary systems whereas KA was only slightly higher than that of the additive‐free ATPS. In an improved ATPS for extractive bioconversion, consisting of PEG400 (20% w/w), ammonium sulfate (17.5% w/w), methanol (5% w/w) and NaCl (3% w/w), a KC value of up to 15.2 was achieved; KA was 1.8; KP (partition coefficient of phenylglycine methyl ester) was 1.2 and the recovery yield of cephalexin was 94.2%. The results obtained from the extractive bioconversion of cephalexin in the improved ATPS showed that it is feasible to perform such an enzymatic process in an ATPS and the system offers the potential as a model for enzymatic synthesis of some water soluble products. © 2001 Society of Chemical Industry  相似文献   

10.
This article presents a study of polyethylene glycol 1000 (PEG1000)/potassium phosphate aqueous two-phase systems (ATPSs) forBacillus subtilis NS99 alkaline protease extraction. The objectives were to evaluate effects of system pH (7.5, 8.5,9.5, and 10.5), and NaCl concentration (0,4,7, and 10% (w/w)) on ATPS binodal curves, effects of system pH, NaCl concentration, and tie-line length (TLL) on alkaline protease partition coefficient (K) and yield (Y%) at room temperature (30±2 ‡C). Casein hydrolysis was used for determination of alkaline protease activity. It was revealed that system pH had the slightest effect on locations of binodal curves (except at pH 10.5). In contrast, addition of NaCl appeared to have a significant effect on phase characteristics since binodal curves of systems with NaCl (4-10% (w/w)) shifted significantly towards the origin in comparison to the ones without NaCl. Increased NaCl concentration from 4 to 10% (w/w), however, showed trivial influence on locations of the binodal curves. Changes of system compositions due to variation in system pH, TLL, and NaCl concentrations obviously resulted in varied obtainable K and Y% of alkaline proteases. Longer TLL and higher pH generally resulted in higher K. In contrast, the lower NaCl concentration, the higher K. Since the same phase volume ration (1:1) was used throughout the experiments, Y% depended solely on K. The most suitable PEG1000/potassium phosphate ATPS was determined at pH 9.5, and comprised PEG1000, potassium phosphate, and NaCl 18.0,13.0, and 0% (w/w), respectively. This system resulted in considerably high K, and Y% of 20.0, and 95.1%, respectively. Information from this study will be important for further development of an ATPS extraction unit for alkaline protease recovery.  相似文献   

11.
The operational conditions for an aqueous two‐phase system (ATPS) for β‐galactosidase purification were optimized and applied to the design of a purification strategy as an alternative to the primary purification steps. The ATPS proved to be suitable for the recovery and primary enzyme purification. The purification process design developed by ATPS, diafiltration, ion exchange, and diafiltration/ultrafiltration was successful, yielding a more than tenfold purification. The purification strategy design resulted in a powerful integrated purification and recovery process, an evidence of the potential for a scale‐up of the β‐galactosidase purification process.  相似文献   

12.
An aqueous two-phase system (ATPS) consisting of acetone and phosphate was used to extract acetoin from fermentation broth. The influence of phase composition on partition of acetoin was investigated. When the filtered fermentation broth was used, relatively high partition coefficient (22.3) and recovery coefficient (96.4%) of acetoin were obtained by a system composed of 30% (w/w) acetone and 35% (w/w) dipotassium hydrogen phosphate. Then the system was applied to extract unfiltered fermentation broth directly, and the recovery coefficient of acetoin was 94.3%. Simultaneously, the byproduct 2,3-butanediol could also be extracted with the recovery coefficient of 93.5%. In addition, the removal of residual sucrose, cells, proteins, and prodigiosin from the fermentation broth was studied, and the removal ratios of these impurities were all above 85%. Ultimately, the recovery of phosphate in the bottom phase was explored, and the recovery coefficient could reach 93.7% through pH adjustment and dilution crystallization. The recovered phosphate also showed good ATPS extraction ability. This method provides a new possible way for the separation of acetoin from fermentation broth.  相似文献   

13.
Aqueous two-phase system (ATPS) was used for simultaneous purification of glycyrrhizic acid (GA) and liquiritin (LQ) from crude extract of Chinese licorice root. It was revealed that 87% GA and 94% LQ were retrieved in the ATPS top phase, under the optimum conditions of 25% (w/w) ethanol, 30% (w/w) K2HPO4 and 4% (w/w) loading sample at 10–40°C. Compared with crude extract, the ATPS top-phase extract exhibited the highest antioxidative activity, but no tyrosinase inhibitory effect. Whereas, the ATPS bottom-phase extract was proved to be effective ABTS radical scavenger and tyrosinase inhibitor, suggesting the potency of the alcohol-salt ATPS purification for the different medicinal purposes.  相似文献   

14.
A liquid‐solid extraction system based on Tween 80/phosphate was developed. Under the optimized conditions (9 wt % Tween 80, 1.6 : 1 (molar ratio) K2HPO4 : NaH2PO4, 1.25 mol/L total phosphate, pH = 7.4), α‐Lactalbumin (α‐La) and β‐Lactoglobulin (β‐Lg) were separated with recovery rates of 87.6 % (in the solid polymeric phase) and 98.2 % (in the salt aqueous phase), respectively. Under the effects of water and salt, the solid phase had the ability to form a new liquid‐solid extraction system, and 85.1 % of α‐La could be reversely extracted into the new salt aqueous phase. Following dialysis against water, proteins obtained through extraction and reverse extraction, were analyzed by polyacrylamide gel electrophoresis (PAGE) and thin‐layer scanning. The method was applied successfully to separate α‐La and β‐Lg from milk whey.  相似文献   

15.
A two‐stage extraction process for the recovery of intracellular proteins from brewers' yeast was selected as a practical model system to study the implementation of polyethylene glycol (PEG)–phosphate aqueous two‐phase systems (ATPS). Disrupted all suspensions generated by homogenisation and bead milling were used to study the impact of cell debris upon the partition behaviour of the intracellular products (bulk protein, fumarase and pyruvate kinase). Regardless of their origin debris particles did not significantly influence the partition behaviour of the intracellular products in selected ATPS distant from the binodal and at volume ratios greater than one. Recycling of used PEG into the initial extraction stage did not significantly influence the protein partition behaviour in batch ATPS. In the polymer recycling studies in continuous ATPS using spray columns, the addition of fresh materials to make up the deficits of phase‐forming chemicals compensate any negative effect of the continuous recycling of the top PEG‐rich phase. The findings of these studies raise the potential application of ATPS processes for protein recovery from complex biological systems. © 2000 Society of Chemical Industry  相似文献   

16.
Lysozyme partitioning in EO50PO50/potassium phosphate aqueous two-phase systems (ATPS) was studied. In the work, the influence of EO50PO50, potassium phosphate and sodium chloride concentration in the ATPS on lysozyme partition coefficient and separation yield was examined. In addition, the influence of the pH of potassium phosphate solution was also investigated. A Box–Behnken design was defined, and response surface models for the partition coefficient K and percentage yield of the enzyme in the top phase Y were calculated. Among the examined factors, the NaCl concentration had the highest influence on lysozyme separation parameters. This influence can be explained mainly by the hydrophobic interactions between the protein and the phase-forming components. A maximum partition coefficient KL1, yield YL1 and YL2 were predicted for EO50PO50, potassium phosphate and NaCl concentrations of 17.40, 22.67% and 0.85 mol/l, respectively, and for pH 9.0. A good agreement was obtained between the experimental and the predicted results.  相似文献   

17.
《分离科学与技术》2012,47(7):1023-1030
Recovery of periplasmic human recombinant interferon alpha-2b (IFN-α2b) from Escherichia coli rosetta-gami2 (DE3) using a single-step polyethylene glycol (PEG)-potassium phosphate aqueous two-phase system (ATPS) was investigated in this study. The influences of system parameters including PEG molecular weight, tie-line length, volume ratio, crude stock loading, system pH, and sodium chloride (NaCl) concentration (%, w/w) were studied. The results showed that the optimum condition to obtain the high purification factor of IFN-α2b in a single step was achieved by ATPS composed of 4% (w/w) PEG 8000, 13% (w/w) potassium phosphate, 0.5% (w/w) NaCl, 10% (w/w) crude stock, and a system pH of 6.5. A purification factor of 26.3 and recovery yield of 40.7% were obtained from optimized ATPS.  相似文献   

18.
Catalase from Amsonia orientalis was purified by ATPS, and its efficiency was compared against hydrophobic interaction chromatography. Activity recovery and purification fold of purified catalase by ATPS were examined under varying experimental conditions. The effects of various factors such as type of phase-forming salts, (PEG) mass, with their different concentrations, pH and temperature effects on partitioning were investigated. The highest activity recovery (156%) and purification fold (8.67) of catalase were obtained in the ATPS system containing 10% (g/g) PEG4000, 15% (g/g) Na2SO4 at pH 6.0 and room temperature. In hydrophobic interaction chromatography, the enzyme has been purified 12.54-fold with 57.5% recovery. The molecular weight of catalase was determined as 75 kDa by SDS-PAGE.  相似文献   

19.
《分离科学与技术》2012,47(8):1859-1881
Abstract

Purification of glucose oxidase from Aspergillus niger and that of β‐galactosidase from Kluyveromyces lactis have been attempted using poly(ethylene glycol) (PEG)‐sodium sulfate aqueous two phase system (ATPS) in the presence of PEG‐derivatives, i.e. PEG‐Coomassie brilliant blue G‐250 and PEG‐benzoate, PEG‐palmitate and PEG‐TMA, respectively. The enzymes showed poor partitioning towards the PEG phase in comparison with other proteins in ATPS containing no ligands. Selective partitioning of other proteins was observed towards the PEG phase in the presence of PEG‐benzoate and PEG‐palmitate enriching β‐galactosidase in the salt phase whereas in the case of glucose oxidase, PEG‐Coomassie brilliant blue G‐250 derivative worked as a better affinity ligand for other proteins. A 19‐fold purification was obtained with the PEG dye derivative after 5 stage cross extractions with 80% recovery of glucose oxidase and an enrichment factor upto ~7 for β‐galactosidase with the PEG‐TMA derivative. The interaction of PEG‐benzoate and PEG‐TMA ligands with the active site of β‐galactosidase has been evaluated by molecular modeling. The effect of the molecular weight of glucose oxidase on its partitioning was confirmed as the molecular simulation shows strong affinity interaction of PEG‐glucoside with the enzyme.  相似文献   

20.
A novel hydrogel of P(NIPAM‐co‐SA) copolymer was synthesized by inverse suspension polymerization by adding sodium acrylate (SA) to improve the phase transition properties of poly(N‐isopropylacrylamide) (PNIPAM). The morphologies, size distribution and thermosensitive characteristics of gel particles were studied and the maximal swelling ratio and LCST (Lower Critical Solution Temperature) of gel particles increased obviously with the addition of SA comonomer. When the protein concentration was 250 μg/mL, the optimized refolding conditions of denatured lysozyme with P(NIPAM‐co‐SA) hydrogel were that operating at the temperature of 35°C and a urea concentration of 2M, in which the mass ratio of P(NIPAM‐co‐SA) hydrogel with 4% SA copolymerized to lysozyme was 10 : 1. Under the optimized conditions, the activity recovery of lysozyme increased to 76.5% assisted by P(NIPAM‐co‐SA) gel particles compared with 55.6% by simple dilution. When refolding finished, the gel particles could be removed and recovered easily and the activity recovery of lysozyme was still as high as 61.5% after reused for 5 batches. With the addition of different amounts of SA comonomer, the hydrophobicity of the copolymer could be varied. Then the copolymerized hydrogel inhibits protein molecules aggregation more effectively through the moderate hydrophobic interactions between copolymers and protein molecules in the course of lysozyme refolding compared with the presence of PNIPAM polymer. All results above demonstrate that the P(NIPAM‐co‐SA) is a cost effective additive with tunable hydrophobicity for application in the refolding of recombinant proteins expressed as inclusion bodies in vitro. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号