共查询到20条相似文献,搜索用时 0 毫秒
1.
Double‐shell microcapsules containing butyl stearate were prepared through interfacial polymerization. The outer shell is polyurea formed through polymerization of toluene‐2,4‐diisocyanate (TDI) and diethylene triamine, and the inner shell is polyurethane (PU) formed through polymerization of TDI and polypropylene glycol 2000 (PPG2000). Styrene maleic anhydride copolymer was used as emulsifier. The effects of core to monomer ratio and dosage of PPG2000 on core content and encapsulation efficiency of microcapsules were investigated. The core content has a maximum at core to monomer ratio of 3–4, and the encapsulation efficiency has a maximum value of 95% at core to monomer ratio of 2. The prepared microcapsules were smooth and compact and have an obvious latent heat of 85 J/g. The shell structure of microcapsules was polyurea and PU. The average diameter of the microcapsules was 1–5 μm. The stabilities of the double‐shell microcapsule, such as anti‐ethanol wash and antiheat properties are obviously improved than those of single‐shell microcapsule. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
2.
A copolymer of styrene and maleic anhydride was synthesized by free radical polymerization at 80°C using N,N‐dimethylformamide (DMF) as solvent and benzoylperoxide as initiator. The monomer feed ratio of styrene to maleic anhydride was varied in the range of 1 : 1 : to 3 : 1. The polymer yield was found to decrease with increase in styrene in the feed. The molecular weight of copolymers which were formed by taking styrene to maleic anhydride ratio of 1 : 1, 2 : 1, and 3 : 1, as determined by Ostwald Viscometery were about 1862, 2015, and 2276 respectively. The acid values of abovementioned three copolymers were found to be 480, 357, and 295, respectively. The typical viscosity values of 20% solids in ammonical solution of copolymers formed by taking feed ratios of Sty : MAn as 1 : 1 and 2 : 1 were 26 and 136 cp, respectively. For the feed ratio 3 : 1, a gel was formed. The synthesized copolymers were hydrolyzed by alkalis, namely, NaOH, KOH, and NH4OH. The dispersing ability of hydrolyzed styrene‐maleic anhydride (SMA) copolymers for dispersion of titanium dioxide was studied. The modified SMA copolymers were found to be effective dispersants for TiO2. Among the three alkalis studied, the Sodium salts of SMA were found to give better dispersion. The copolymer having a 1 : 1 feed ratio showed the best dispersing ability for TiO2 particles among the three ratios studied. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3194–3205, 2007 相似文献
3.
Polypropylene (PP) was modified by solid‐phase graft copolymerization with maleic anhydride (MAH) and styrene (St), using benzoyl peroxide as the initiator and xylene as the interfacial agent. Effects of various factors such as monomer concentration, monomer ratio, initiator concentration on grafting percentage, and acid value were investigated. The graft copolymer was characterized by Fourier transform infrared, pyrolysis gas chromatography—mass spectroscopy, and dynamic mechanical analysis, and the intrinsic viscosity of the extractive from the reaction product was investigated. The results showed that the grafting percentage and acid value of the graft copolymer of PP with two monomers (MAH and St) were considerably higher than those of the graft copolymer of PP with MAH alone. The graft segments were shown to be the copolymer of St and MAH with a substantial molecular weight. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2482–2487, 2000 相似文献
4.
Zhen Yao Jiang‐Shan Zhang Mu‐Lang Chen Ben‐Ju Li Ying‐Ying Lu Kun Cao 《应用聚合物科学杂志》2011,121(3):1740-1746
Block copolymers, polystyrene‐b‐poly(styrene‐co‐maleic anhydride), have been prepared by reversible addition‐fragmentation chain transfer (RAFT) polymerization technique using three different approaches: 1‐phenylethyl phenyldithioacetate (PEPDTA) directly as RAFT agent, mediated polystyrene (PS) block as the macromolecular PS‐RAFT agent and mediated poly(styrene‐maleic anhydride) (SMA) block with alternating sequence as the macromolecular SMA‐RAFT agent. Copolymers synthesized in the one‐step method using PEPDTA as RAFT agent possess one PS block and one SMA block with gradient structure. When the macromolecular RAFT agents are employed, copolymers with one PS block and one alternating SMA block can be produced. However, block copolymers with narrow molecular weight distribution (MWD) can only be obtained using the PS‐RAFT agent. The MWD deviates considerably from the typical RAFT polymerization system when the SMA is used as the RAFT agent. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
5.
The imidization of poly(styrene‐co‐maleic anhydride) with amines may improve some of its end‐use properties. The objective of this study was to examine the mechanism and kinetics with aniline (ANL) as an amine of the preparation of poly(styrene‐co‐N‐phenyl maleimide). The reaction was carried out in a tetrahydrofuran solution at 25–55°C and in an ethylbenzene solution at 85–120°C. The extent of the reaction was determined by conductance titration, a new and simple method. Two consecutive reactions were involved in the imidization: ring opening to produce an acido‐amide group and ring closing to form a corresponding imide group. The imidization rate was greatly influenced by the reaction temperature and the molar ratio of ANL to the anhydride. A model for the imidization kinetics over a wide range of reaction temperatures and concentration ranges was developed and validated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2744–2749, 2006 相似文献
6.
The morphology and mechanical properties of polycarbonate (PC) blends with rubber‐toughened styrene–maleic anhydride copolymer materials (TSMA) were investigated and compared with the properties of blends of PC with acrylonitrile–butadiene–styrene (ABS) materials. The PC/TSMA blends showed similar composition dependence of properties as the comparable PC/ABS blends. Polycarbonate blends with TSMA exhibited higher notched Izod impact toughness than pure PC under sharp‐notched conditions but the improvements are somewhat less than observed for similar blends with ABS. Since PC is known for its impact toughness except under sharp‐notched conditions, this represents a significant advantage of the rubber‐modified blends. PC blends with styrene–maleic anhydride copolymer (SMA) were compared to those with a styrene–acrylonitrile copolymer (SAN). The trends in blend morphology and mechanical properties were found to be qualitatively similar for the two types of copolymers. PC/SMA blends are nearly transparent or slightly pearlescent. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1508–1515, 1999 相似文献
7.
Encapsulated nanometer calcium carbonate (nano‐CaCO3) was prepared using styrene and maleic anhydride (MAH) copolymer in 2‐propanol or methanol–water mixture in the presence of different initiator systems. The particle morphology and physical properties of the encapsulated nano‐CaCO3 particles, such as the interaction between the encapsulating polymer and the nano‐CaCO3, and the thermal stability of encapsulated nano‐CaCO3 were studied by Fourier‐transform infrared spectroscopy (FTIR), Soxhlet extraction experiments, thermogravimetric analysis banded with FTIR (TGA‐FTIR) and transmission electron microscopy (TEM). The encapsulating ratio and the stable encapsulating ratio of encapsulated nano‐CaCO3 were characterized. The results showed that a strong interfacial interaction was obtained due to the formation of a chemical bond or ion‐dipole between the C?O group of MAH and Ca2+ ion of nano‐CaCO3. The encapsulating ratio and stable encapsulating ratio of nano‐CaCO3 initiated by AIBN was higher than that initiated by BPO. Addition of maleic anhydride increased the encapsulating ratio and the stable encapsulating ratio of encapsulated nano‐CaCO3. For the encapsulated nano‐CaCO3 prepared in methanol–water, the diameter of the encapsulated nano‐CaCO3 particle increased from 60–70 nm to about 100 nm and the morphology changed from a cube with a sharp edge to spherical with a rough surface. Copyright © 2006 Society of Chemical Industry 相似文献
8.
The imidization of poly(styrene‐co‐maleic anhydride) (SMA) was conducted, and the glass‐transition temperatures (Tg's) of the resulting products were measured with differential scanning calorimetry. The contributions from functional groups of maleic anhydride, N‐phenylmaleamic acid, and N‐phenylmaleimide to Tg were examined. Tg increased in the order of SMA < styrene–N‐phenyl maleimide copolymer < styrene–N‐phenyl maleamic acid copolymer and followed the Fox equation. Tg of the imidized products of SMA could be controlled by the conversions of both ring‐opening and ring‐closing reactions. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2418–2422, 2007 相似文献
9.
Liquid crystallization of poly(styrene‐co‐maleic anhydride) induced by intermolecular hydrogen bonds
The liquid crystallization of general polymer (GP) with maleic anhydride in the main chain has been realized through molecular recognition and self‐assembly based on intermolecular hydrogen bonds. Poly[styrene‐co‐(N‐4‐carboxylphenyl)maleimide] (SMIBA) was synthesized by imidization and dehydration of Poly(styrene‐co‐maleic anhydride) (SMA) with p‐aminobenzoic acid (ABA) for use as an H‐bonded donor polymer. 4‐Methoxy‐4′‐stilbazole (MSZ) and 4‐nitro‐4′‐stilbazole (SZNO2) were prepared as an H‐bonded acceptor. SMIBA was complexed with MSZ or SZNO2 by slow evaporation from pyridine solution to form a self‐assembly, which exhibits the mesophase, while neither of the individual components is mesogenic. The phase diagrams of a variety of mixtures between of SMIBA and stilbazoles have been established using DSC and POM. They show complete miscibility and high thermal stability of the liquid crystalline phase over the whole composition range. The tuning of liquid crystalline properties was achieved by changing the composition of the mixture and involving it with a mixture of SZNO2 and MSZ. IR measurements strongly support the existence of an H‐bonded complex between the carboxylic acid of SMIBA and the pyridine group of stibazoles. Unlike conventional side‐chain liquid crystalline polymer (SLCP), supramolecular SLCP with a lower molecular weigh polymeric donor has higher thermal stability of the liquid crystalline phase due to the microphase separated in the hydrogen bonding case. Liquid crystallization of GP, such as SMA, induced by hydrogen bonds, offers a new route to prepare functional material with controlled molecular architecture from readily accessible and simpler precursors. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 97–105, 1999 相似文献
10.
Fiber formation from atactic polystyrene (aPS) and alternating poly(styrene‐maleic anhydride) (PSMA) synthesized by free radical polymerization (AIBN, 90°C, 4 h) were investigated by electrospinning from various solutions. aPS was soluble in dimethylformamide (DMF), tetrahydrofuran (THF), toluene, styrene, and benzene, whereas PSMA was soluble in acetone, DMF, THF, dimethylsulfoxide (DMSO), ethyl acetate, and methanol. aPS fibers could be electrospun from 15 to 20% DMF and 20% THF solutions, but not from styrene nor toluene. PSMA, on the other hand, could be efficiently electrospun into fibers from DMF and DMSO at 20 and 25%, respectively. Few PSMA fibers were, however, produced from acetone, THF, or ethyl acetate solutions. Results showed that solvent properties and polymer–solvent miscibility strongly influenced the fiber formation from electrospinning. The addition of solvents, such as THF, generally improved the fiber uniformity and reduced fiber sizes for both polymers. The nonsolvents, however, had opposing effects on the two polymers, i.e., significantly reducing PSMA fiber diameters to 200 to 300 nm, creating larger and irregularly shaped aPS fibers. The ability to incorporate the styrene monomer and divinylbenzene crosslinker in aPS fibers as well as to hydrolyze PSMA fibers with diluted NaOH solutions demonstrated potential for post‐electrospinning reactions and modification of these ultrafine fibers for reactive support materials. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
11.
The condensation reaction of styrene‐maleic anhydride copolymer (SMAH) with polytetramethylene ether glycol (PTMEG) in the presence or absence of a hydrated zinc acetate catalyst was studied in a batch mixer. As a control, pure SMAH and an SMAH/catalyst blend were also subjected to the same processing conditions. The reaction characteristics of the blends were investigated by Fourier transform infrared spectroscopy (FTIR) and thermal and rheological analysis. FTIR analysis of the SMAH/PTMEG blend indicated ester formation. The addition of zinc acetate and/or PTMEG to SMAH decreased the glass transition temperature of pure SMAH. Oscillatory shear properties of storage modulus, G′, loss modulus, G″, and complex viscosity, η*, were measured. The SMAH/PTMEG/zinc acetate blend had higher G′, G″, and η* than the blend without the zinc acetate catalyst. The parameters of the relaxation spectra were calculated by using the experimental oscillatory data and the generalized Maxwell model. Zero shear viscosity and the mean relaxation time increased with addition of zinc acetate and/or PTMEG to SMAH as a result of chain extension/branching reactions. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2615–2623, 2002 相似文献
12.
Spiropyran photochromic materials have been widely studied in military camouflage, optical data storage, information encryption, and fashion ornaments. The non-photochromism and low endurance of solid spiropyran make the challenges of their application. Photochromic microcapsules with a butyl acetate solution of spiropyran as core and polyurethane as shell are synthesized via interfacial polymerization. The optimized polyurethane photochromic microcapsules are prepared with a Tween 20 concentration of 4 wt%, core–shell ratio of 16:5, and spiropyran concentration of 0.40 wt%. Polyurethane photochromic microcapsules with a mean particle diameter of 0.33 μm are obtained. The morphology shows smooth spheres, and the core–shell structure is observed. Butyl acetate in the microcapsule core does not evaporate at a temperature lower than 218.01°C as the microcapsule shell insulates heat. The polyurethane photochromic microcapsules are mixed with adhesive, thickener, and water into a paste and screen-printed on cotton fabric. The printed fabric shows the ΔE of 17.56, 11.93, and 6.96 after 80s irradiation with the xenon lamp intensity of 102, 68, and 34 mW cm−2. The light stability of the photochromic fabric is excellent as ΔE decreases about 8.28% after 20 cycles of UV-Vis irradiation. 相似文献
13.
以2,3-环氧丙基三甲基氯化铵(ETA)为阳离子化试剂,对苯乙烯-马来酸酐共聚物(SMA)进行阳离子化改性,制备出一种阳离子性高分子分散剂(SMG)。通过红外光谱、含氮量、表面张力以及溶解性等的测定,研究了SMG的结构与性质;通过对颜料黄14的分散性考察,研究了SMG的分散性能。结果表明,SMA在阳离子化过程中,酸酐基团全部开环,部分形成酯键,阳离子化度达到7.5%左右;SMG的表面活性较低,但对颜料黄14的分散稳定性较好,在pH=7.0条件下,可以使颜料的Zeta电位提高至 35.4 mV。 相似文献
14.
Using direct polymer reaction of poly(styrene‐co‐maleic anhydride) (SMA), a synthesis of copolymer of styrene and N‐aryl succinimide (SMI) has been investigated. SMI copolymers were synthesized from SMA copolymers by a concerted two‐step reaction, which consisted of the condensation reaction (step 1) of SMA with aromatic amine to prepare a precursor, succinamic acid, for imide formation and the cyclodehydration reaction (step 2) of succinamic acid. In this article, the application of Searle's preparation method of N‐aryl or N‐alkyl maleimide to the direct polymer reaction for SMI was attempted. Compared with synthesis of monomeric imides, the imide formation in polymeric condition appeared to be a little more sensitive to the reaction condition. The optimum condition for maximum conversion was examined in terms of time, temperature, and the amount of reactants. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1187–1196, 1999 相似文献
15.
Potentially reactive blends of styrene–maleic anhydride (SMAH) with ethylene/methyl acrylate/glycidyl methacrylate (E‐MA‐GMA) and nonreactive blends of SMAH with ethylene/methyl acrylate (E‐MA) were produced in a Brabender batch mixer and in a corotating twin‐screw extruder. The products were characterized in terms of rheology, morphology, and mechanical properties to understand the reaction characteristics between anhydride/epoxy functional groups. Storage modulus, G′, loss modulus, G″ and complex viscosity, η* of the reactive blends were higher than those of nonreactive ones. At 25% E‐MA‐GMA content, maximum in η* was obtained for the reactive blends. The reactive blends showed finer morphology than the nonreactive ones at all concentrations studied. Mechanical characterization showed that reactive SMAH/E‐MA‐GMA blends had higher tensile strength, % strain at break, and tensile modulus than the nonreactive blends for all corresponding modified polyethylene contents. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 790–797, 2001 相似文献
16.
为了提高多孔树脂微球的亲水性,扩大其应用范围,文章通过马来酸酐(MAH)与多孔苯乙烯-二乙烯基苯共聚微球悬挂双键的接枝聚合,制备了改性的多孔树脂微球。用扫描电镜、红外光谱法、酸碱滴定法等对产物进行了表征。考察了微球的交联度、引发剂、反应时间等因素对马来酸酐接枝率和改性微球形貌的影响。在以交联度55%的多孔微球为基球,基球与MAH质量比为5∶3,质量分数为3%的偶氮二异丁腈为引发剂,80℃、反应6 h时,制得了较好多孔形貌的改性微球。结果表明,马来酸酐为改性剂有利于保持多孔微球的多孔形貌。 相似文献
17.
Novel cationic pigment dispersions, which have potential uses in inkjet inks and coloration of textile and paper, were prepared by grafting quarternary ammonium groups onto the surface of polystyrene‐maleic anhydride encapsulated C. I. pigment yellow 14 (PY 14) powder. It is shown that the Zeta potentials greatly rely on the reaction time and temperature. And also, when the weight ratio of glycidyltriethylammonium chloride (GTA) to encapsulated PY 14 powder was 3 : 1, the Zeta potential of modified pigment dispersion reached to + 35.05 mV. Just due to the high Zeta potential of the prepared cationic pigment dispersions, the prepared cationic pigment dispersion shows good dispersion stability and a narrow size distribution with the average particle size of 202.9 nm. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
18.
Grafting of maleic anhydride (MA) onto styrene–butadiene–styrene triblock copolymer (SBS) was carried out by free radical polymerization using supercritical carbon dioxide (SC CO2) as a solvent of MA and swelling agent of SBS. The effect of various factors such as monomer concentration, initiator concentration, SC CO2 pressure, and reaction time on grafting ratio was studied. SBS and the product (SBS‐g‐MA) were characterized by Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). GPC data showed that the molecular weight of SBS‐g‐MA is bigger than that of SBS. DSC testing indicated that the glass transition temperature (Tg) of SBS‐g‐MA is higher than that of SBS. By SEM photo, we can observe that some particles which contain more oxygen atom grew out from the surface of SBS‐g‐MA when grafting ratio reached at 5.6%, and the amount and diameter of particles increased with increasing of grafting ratio. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4425–4429, 2006 相似文献
19.
High‐molecular‐weight polymers of ϵ‐caprolactone (CL) and maleic anhydride (MA) with anhydride group content of about 1% wt have been synthesized and studied. The polymerization reaction was carried out in bulk under nitrogen atmosphere. Stannous octoate (Sn(oct)2), and 2,2'‐azobisisobutyronitrile (AIBN) were used as a catalyst and an initiator, respectively. A two‐level design of experiments was used to study the effect of various conditions on the characteristics of the copolymer. Reaction time, temperature, and concentration ratio of various reactants (two monomers, monomer to catalyst, and monomer to initiator) were the independent variables used, and the dependent variables included the molecular weight and the anhydride content in the polymer. Nuclear magnetic resonance (NMR) studies indicate that the succinic anhydride units were incorporated individually either to the polymer chain end or backbone. Anhydride content in the polymer and gel permeation chromatograph (GPC) studies indicate that the maleic anhydride acts as the true initiating species rather than as a comonomer in the system. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 3189–3194, 2000 相似文献
20.
Thermal characterization of maleic anhydride‐styrene‐allyl propionate (MA‐St‐AP) terpolymer and its ester derivatives named as n‐alkyl maleate and shown as nPr MA‐St‐AP, nBu MA‐St‐AP, nPn MA‐St‐AP, and nBz MA‐St‐AP was carried out. The thermal characterization was performed using thermal analysis techniques such as TGA, DTA, DSC, and TMA. Different results were observed between the original terpolymer and its ester derivatives. Thermal stabilities of the terpolymer and its ester derivatives were compared by using various measurements plotted as TGA, DTA, DSC, and TMA curves. The increase in the alcohols' carbon numbers added to the original terpolymer results in ester derivatives with different thermal stability behavior. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 600–604, 2007 相似文献