首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, two‐component free‐standing films were obtained by coating a polycarbonate (PC)‐coated Pt electrode first with polypyrrole (PPy) in an organic medium and then polyaniline (PAn) in an aqueous medium using an electrochemical technique. The amount of PPy and PAn contained in the films was controlled by varying the electrolysis time. The PC/PPy/PAn films were characterized by cyclic voltammetry, conductivity, FTIR and UV–visible spectrophotometry, and thermogravimetric analysis. The resistance change of the films was determined in the temperature range of ?15 to 120 °C and their temperature sensor properties were investigated. © 2002 Society of Chemical Industry  相似文献   

2.
Polystyrene latexes were prepared by emulsion polymerization. Styrene was used as monomer, potassium persulfate was the reaction initiator and sodium hydrogen carbonate was used as buffer. Surfactant may or may not be used. Three types of surfactant, ie sodium dodecylbenzene sulfonate (anionic), Triton X‐100 and Vulcastab LW (nonionic), and hexadecyltrimethyl ammonium bromide (cationic), were used. The prepared latexes were characterized according to concentration, density, pH, ionic strength, particle size, particle size distribution and surface charge. For prepared latexes with anionic surfactant, the effects of temperature, initiator concentration, surfactant concentration and amount of monomer on the latex size were investigated. Scanning electron microscopy was used as a tool for latex characterization. The results show that by increasing temperature, initiator and emulsifier concentration, the latex diameter decreases. However, size increases by increasing the amount of monomer. A potentiometric titration technique was employed for determination of surface charge. It was found that for all latexes, surface charge densities are in the same range. © 2000 Society of Chemical Industry  相似文献   

3.
Polyaniline (PANI) was synthesized by chemical oxidative polymerization of aniline (ANI) in the presence of sulfonated crosslinked polystyrene (SCPS) particles in neutral water. The polymerization of ANI occurred preferentially on the surfaces of the SCPS particles, resulting in core/shell structured SCPS/PANI particles. The conductivities of the SCPS/PANI particles increased with increasing degree of sulfonation of the SCPS and with increasing ANI/SCPS weight ratios in the reactants. Conductive epoxy‐based composites were prepared by curing the blend of SCPS/PANI particles and epoxy resin with an aromatic amine curing reagent, indicating the core/shell structured particles were stable, to some extent, to alkaline environments, which will be of significant importance for the practical application of PANI in many cases. Copyright © 2006 Society of Chemical Industry  相似文献   

4.
An inverted emulsion method for the synthesis of electrically conductive polyaniline–polystyrene blends of different compositions (10, 30, 50, 70, and 85%, wt/wt) is described. Polymerization of aniline is carried out in chloroform in the dispersed phase by using benzoyl peroxide as a novel oxidant and sulfosalicylic acid as the dopant. The blends synthesized with benzoyl peroxide as the oxidant are of high purity and the excess benzoyl peroxide is readily removed with acetone, which is used to break the emulsion and precipitate the polymer. The absorption spectra, FTIR, FT Raman, and electron paramagnetic resonance spectroscopy confirm the presence of polyaniline in the salt form and polystyrene in the blend. The thermal stability of polyaniline salt decreases with an increase in polystyrene content in the blend. The SEM studies show that the particles of polyaniline–sulfosalicylic acid are dispersed on the polystyrene surface. The blends of polyaniline–polystyrene prepared by the present method were found to display conductivities as high as 0.5–0.1 S cm?1. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1163–1171, 2002  相似文献   

5.
This investigation deals with the synthesis, characterization and actuation behavior of conductive polyaniline‐coated electroactive paper actuators. The actuator is made by electrochemical deposition of conductive polyaniline on a cellulose paper. The aim of the investigation was to improve the bending displacement of electroactive paper actuators. The displacement outputs of the actuators show that a trilayer is better than a bilayer configuration. The nature of the dopant ion used in the electro‐generation affects the performance. A change in humidity plays a vital role in actuation performance of the actuators. Comparing the performance of electroactive paper actuators with and without a conductive polyaniline coating, the coating improves the displacement output threefold. Finally, the actuation principle mechanism is addressed. Copyright © 2007 Society of Chemical Industry  相似文献   

6.
A photon‐transmission method was used to probe the evolution of transparency during film formation from polystyrene (PS) particles with different molecular weights. The latex films were formed at room temperature from the PS particles having two different average molecular weights and annealed at elevated temperatures in various time intervals above the glass transition (Tg). Onset temperatures (TH) at given times (τH) for the optical clarity of films formed from low (LM) and high molecular (HM) weight PS particles were used to calculate the healing activation energies for the minor chains and found to be 22.0 ± 0.5 and 27.0 ± 0.6 kcal/mol, respectively. The increase in the transmitted photon intensity, Itr, above the TH was attributed to increase in the number of interfaces that disappeared. The Prager–Tirrell (PT) model was employed to interpret the increase in crossing density at the junction surface. The backbone activation energies (ΔE) were measured and found to be 127.8 ± 2.5 kcal/mol for a diffusing polymer chain across the junction surface for LM and HM latex films. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 866–874, 2000  相似文献   

7.
Four kinds of polyaniline (PANI)‐coated glass fibers (GF–PANI) combined with bulk PANI particles were synthesized. GF–PANI fillers containing different PANI contents were incorporated into an epoxy–anhydride system. The best conductivity behavior of the epoxy/GF–PANI composites was obtained with a GF–PANI filler containing 80% PANI. Such a composite shows the lowest percolation threshold at about 20% GF–PANI or 16% PANI (glass fiber‐free basis). The PANI‐coated glass fibers act as conductive bridges, interconnecting PANI particles in the epoxy matrix, thus contributing to the improvement of the conductivity of the composite and the lower percolation threshold, compared with that of a epoxy/PANI–powder composite. Particularly, the presence of glass fibers significantly improves the mechanical properties, for example, the modulus and strength of the conductive epoxy composites. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1329–1334, 2004  相似文献   

8.
Latex interpenetrating polymer networks (LIPNs) have been prepared using a crosslinked polychloroprene latex as the seed emulsion, followed by the in situ polymerization of styrene, typically with a 10% divinyl benzene crosslinker. Polychloroprene–crosslinked polystyrene (XPS) ratios ranging from 70/30 to 40/60 were used, with the second monomer being added as a single aliquot rather than by “starvation” routes. The majority of the work has been conducted using the water‐soluble persulfate initiator method, which entails lengthy (∼ 6 h) polymerizations. To follow the development of microstructure, polymerizations were also stopped at 0.5, 1, and thence hourly intervals up to 6 h, so that any effect of time on shell and domains could be seen by transmission electron microscopy (TEM). Parallel studies using azo‐bis(isobutyronitrile) (AIBN) as initiator at the same temperature were conducted. Products were also studied, after staining, by TEM. For the persulfate initiator, domain structures predominated for the 70/30 ratio, but polystyrene‐rich shells are found in all cases, with increasing thickness as the chloroprene/styrene ratio was reduced. The styrene‐rich products (i.e., 40/60 Neoprene/XPS ratio) appear to have larger unstained domains suggesting phase separation. For the AIBN‐initiated styrene polymerization, shells are less evident, and where they exist, are both thinner and less continuously developed. Domain sizes are somewhat larger. This relatively hydrophobic initiator has caused polymerization predominately in the interior of each latex particle. The particle size distribution of the seed neoprene latex is broad and bimodal. As the LIPNs form, the larger diameter component increases and little evidence for fresh nucleation, in the form of small diameter particles, is seen. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 629–638, 1999  相似文献   

9.
A photon-transmission method was used to monitor the evolution of transparency during film formation from various polystyrene (PS) particles which were produced using different steric stabilizers, that is, poly(acrylic acid) (PAA), poly(vinyl alcohol) (PVA), and polyvinylpyrrolidone (PVP). The latex films were prepared from PS particles at room temperature and annealed at elevated temperatures in various time intervals above the glass transition (Tg). To simulate the latex film-formation process, a Monte Carlo technique was performed for photon transmission through a rectangular lattice. The number of transmitted (Ntr) photons were calculated as a function of particle–particle interfaces that disappeared. The increase in the transmitted photon intensity (Itr) was attributed to the increase in the number of interfaces that disappeared. The Prager–Tirrell (PT) model was employed to interpret the increase in crossing density at the junction surface. The backbone activation energy (ΔE) was measured and found to be around 120 kcal mol−1 for a diffusing polymer chain across the junction surface for all PS latex films. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1257–1267, 1998  相似文献   

10.
This report discusses the drying behavior of monodispersed polystyrene latex at elevating temperature with particular attention to the relationship between water evaporation rate and morphological evolution during the film formation process. At the first stage, water evaporation rate was less influenced by the skin film formed at the latex/air interface, which was consistent with Croll's model. During this stage, a drying front advanced from the top film toward the bulk dispersion. At the final stage of film formation, the water evaporation rate was less than that of the initial stage, and another drying front developed from the interior region outside the system. Two distinct boundaries corresponding to the opposite directions of the second drying front between completely dried region and wet region were found if the film was peeled off the container surface. Besides, some particular morphologies were found in the completely dried region, which was likely related to preferable coalescence among the particles induced by capillary force because of water evaporation. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1835–1840, 2001  相似文献   

11.
Conductive polyaniline solutions were chemically prepared using bis (2-ethylhexyl) hydrogen phosphate (DiOHP) as the dopant chemical species. The codissolution method leads to conductive polyaniline–polystyrene (PANI–PSt) composites with good mechanical properties. The electronic structure of both conducting PANI films and PANI–PSt blends was investigated by X-ray photoelectron spectroscopy, which allowed one to quantify the proportion of benzenoid amine, quinoid imine, and protonated units. Blending polyaniline with PSt does not involve important modifications in the polymer electronic structure. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1209–1214, 1998  相似文献   

12.
Polyaniline (PANI)–organoclay nanocomposites were prepared. Intercalation of aniline monomer into montmorillonite (MMT) modified by polyoxyalkylene was followed by subsequent oxidative polymerization of the aniline in the interlayer spacing. The organoclay was prepared by cation exchange process between sodium cation in MMT and onium ion in four different types of polyoxyalkylene diamine and triamine with different molecular weight. Infrared spectra confirm the electrostatic interaction between the positively charged onium group (NH3+) and the negatively charged surface of MMT. X‐ray diffraction analysis provides a structural information. The absence of d001 diffraction band in the nanocomposites was observed at certain types and contents of organoclay. Scanning electron microscopy and transmission electron microscopy were employed to determine the dispersion of the clay into PANI. The thermal degradation behavior of PANI in the nanocomposites has been investigated by thermogravimetric analysis. The weight loss suggests that the PANI chains in the nanocomposites are more thermally stable than pristine PANI. This improvement is attributed to the presence of nanolayers with high aspect ratio acting as barriers, thus shielding the diffusion of degraded PANI from the nanocomposites. The electrical conductivity of the nanocomposites was increased 30 times more than that of pure MMT at a certain concentration. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Polystyrene latexes were synthesized to study water evaporation details, and to separate the energy of film formation from the glass transition temperature. Three experimental techniques were employed in the present work to study the formation of polystyrene latex films: standard differential scanning calorimetry (DSC), modulated DSC, and the Mahr method applied to modulated DSC. High-resolution thermogravimetric analysis (TGA) was used to study the water evaporation. The TGA experiments revealed evaporation curves consistent with the notion of surface tension and tortuosity effects being the controlling factors. The method of Mahr was combined with the new software package for DSC to provide an improved method of separating the glass transition of polystyrene from its surface tension-based free energy of film formation. The result was that the films formed under the extremely mild conditions employed had 30–70% of their surfaces obliterated by interfacial adhesion. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1763–1768, 1999  相似文献   

14.
Transparent conducting latex films have been prepared from core‐shell latices. The latex particles have a poly(butyl methacrylate) (PBMA) core of about 700 nm and a very thin polypyrrole (PPy) shell. We have studied the film formation of latices with 1, 2, and 4 wt % PPy and compared this with the film formation of the pure PBMA latex. The film formation process was studied by transparency measurements, atomic force microscopy surface flattening, and transmission electron microscopy on ultrathin sections of films after various annealing times at 120°C. It is demonstrated that highly transparent (>90%) and antistatic films can be produced using these latices. The presence of a polypyrrole shell around the PBMA latex particle seriously hinders the deformation of the particles. The amount of polypyrrole, and thus the shell thickness, is the determining factor for the speed of film formation. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 900–909, 2001  相似文献   

15.
Poly(o‐toluidine) ( POT) has been electrodeposited on brass from an aqueous salicylate solution by using cyclic voltammetry, and its corrosion protection performance has been evaluated by potentiodynamic polarization technique and electrochemical impedance spectroscopy in aqueous 3% NaCl solution. The corrosion potential was about 0.115 V vs. SCE more positive for the POT‐coated brass than that of uncoated brass and reduces the corrosion rate of brass almost by a factor of 800. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
In this paper, we report novel crosslinking systems for surfactant-free artificial latexes based on anhydride-containing polymers. Surfactant-free latexes with average particle diameters of about 150 nm and a ζ-potential of −70 mV have been successfully obtained from anhydride-containing polymers with various Tgs and polarities, including poly(octadecene-alt-maleic anhydride) (POMA) and maleinized polybutadiene (PBDMA). When adipic dihydrazide (ADH), a water-soluble crosslinker, was added to these latexes, no differences in particle size or ζ-potential were found; the presence of ADH did not affect the latex stability. In contrast, when 1,6-diaminohexane (DAH) was added to these latexes, it was found to interact with the polymer particles, indicated by a decrease in absolute ζ-potential for the latex particles and even gelation in the case of POMA. From 1H NMR and LC-MS studies, it has been shown that no free DAH was present after being added to the latex, while free, unreacted ADH was present in aqueous phase upon its addition to the latex. Kinetic studies revealed that irreversible imide formation between anhydride and ADH took place at temperatures of 90 °C and above. In comparison, DAH only formed imides with the copolymers at significantly higher curing temperatures, i.e. >130 °C. Furthermore, the film formation of these latexes was studied; for the different copolymer latexes, curing at temperatures above the Tg of the respective copolymers led to homogeneous film formation. These systems based on surfactant-free latexes crosslinked with ADH have displayed promising properties for future coating applications.  相似文献   

17.
The development of polymers with high electrical conductivity has attracted significant research interest because of the possibility of new applications. Electrically conductive latexes have drawn the attention of scientists over the last few years. The present work reports the preparation of composites in which polyaniline was deposited onto perlite particles by oxidative polymerization. Electrically conductive latex was prepared by homogeneously mixing submicron conductive composites with poly(vinylacetate‐co‐butylacrylate‐co‐butylversitate) resin in a desirable ratio. The conductivity of composites and latex was measured by a standard four‐point probe. Morphology of composites was studied by scanning electron microscopy. Adhesion and electroactivity of the latex were also investigated. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2528–2531, 2004  相似文献   

18.
Polyisoprene‐block‐polystyrene‐block‐polyisoprene (ISI) was synthesized by the iniferter route and its use, as compared to a commercial polystyrene‐block‐polyisoprene‐block‐polystyrene (SIS), in the enhancement of the toughness of high‐impact polystyrene (HIPS), prepared by the γ‐radiation vulcanized natural rubber (RVNR) latex/phase transfer/bulk polymerization technique, was investigated. Addition of 5% SIS was adequate as an interfacial agent, which effectively increased the unnotched Izod impact energy of HIPS, whereas use of 10% of ISI was required. A long polyisoprene block with two polystyrene segments of SIS was favorable for compatibilization of HIPS. Transmission electron micrographs revealed the uniform distribution of the block copolymer at the shell region of the rubber particle. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1307–1316, 2002  相似文献   

19.
γ‐Radiation vulcanized natural rubber (RVNR)/phase transfer/suspension polymerization technique was used to prepare high‐impact polystyrene (HIPS) in bead form. The high notched Izod impact resistance of HIPS based on RVNR was observed and compared with that of unmodified PS. The impact resistance of HIPS based on RVNR was further enhanced by addition of 10% of polystyrene‐block‐polyisoprene‐block‐polystyrene copolymer. A mesh structure of all crosslinked rubber particles containing polystyrene and long crazes in HIPS were observed under electron microscopy. Copyright © 2003 Society of Chemical Industry  相似文献   

20.
Blends of conductive polymers with classical ones can exhibit good mechanical properties and good electrical conductivity and deserve great attention for application in electronic industrial technology. Conductive polyaniline solutions have been chemically prepared using bis(2-ethyl hexyl)hydrogen phosphate (DiOHP) as the dopant chemical species. The codissolution method leads to conductive polyaniline–polystyrene (PANI–PSt) composites with good mechanical properties. The dependence of electrical conductivity on the volume fraction of PANI in the blend is found to be characteristic of a percolation system. Electrical conductivity and thermoelectric power measurements are interpreted on the basis of hopping mechanisms between polaronic clusters. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1205–1208, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号