首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The direct treatment of whey wastewater at various sludge ages (10–75 days) and high biomass concentration (above 50 g mixed liquor suspended solid (MLSS) dm?3) in a submerged membrane bioreactor (sMBR) is described. The chemical oxygen demand (COD) of raw whey varied in the range of 60 and 90 g dm?3. After feeding the sMBR with raw whey, effluent COD reduced to about 20 g dm?3. The effluent was free of suspended solids and total coliform bacteria. Total phosphorus (TP) and orthophosphate (Ortho‐P) in the influent varied between 204 and 880 mg dm?3 and between 180 and 620 mg dm?3, and effluent TP and Ortho‐P reduced to 113 and 109 mg dm?3, respectively. The ammonium and nitrate concentrations in the influent were in the ranges of 3.4 and 120 mg dm?3 and 10 and 503 mg dm?3, respectively. The effluent ammonium concentration varied between 17.6 and 198 mg dm?3 and nitrate concentrations varied between 0.9 and 69 mg dm?3. Effluent turbidity varied between 23 and 111 FAU (Formazin Attenuation Unit). The results show that sMBR is an effective pre‐treatment system for high‐strength agro‐wastewaters because of its ability to reduce the pollution load. Copyright © 2004 Society of Chemical Industry  相似文献   

2.
A pilot‐scale anaerobic/aerobic ultrafiltration system was tested to treat high‐strength tomato‐processing wastewater, to achieve stringent dry‐ditch discharge criteria of soluble biochemical oxygen demand (SBOD) <10 mg dm?3, total suspended solids <10 mg dm?3, ammonia nitrogen <3 mg dm?3 and soluble phosphorus <0.5 mg dm?3. The anaerobic/aerobic system achieved 99.4% SBOD removal, 91.9% NH3 N removal and 100% phosphorus removal at an overall hydraulic retention time of 1.5 days and solids retention time of 5 days during the tomato canning season. Respirometric studies confirmed that the pretreatment of tomato‐processing wastewater in the anaerobic reactor increased the readily biodegradable fraction, improved kinetics, and eliminated nutrient deficiency problem. Copyright © 2006 Society of Chemical Industry  相似文献   

3.
The treatment of effluent from a paper/board factory that produced 280 tons of cardboard and consumed 1200 m3 of water per day was carried out. Wastewater analysis showed that the mill effluent contained 3000 mg dm?3 suspended solids, 1400 mg dm?3 COD (chemical oxygen demand) and 500 mg dm?3 BOD (biochemical oxygen demand). An internal treatment cycle is suggested that involves recirculation of paper‐machine wastewater (white‐water) and may be accomplished by installing a flotation saveall (fiber recovery) unit. This arrangement reduced fresh water use by about 90%, reduced fiber loss by 80–90%, and increased board production by 13%. An external treatment process for the effluent was assessed by conducting laboratory coagulation tests (alum, ferric chloride, ferrous sulfate, and polyelectrolyte) on the whole mill effluent. Oxidation of the mill effluent using calcium hypochlorite before discharging the effluent to a lagoon offers the benefits of killing the harmful bacteria and reducing the pollution load. Copyright © 2003 Society of Chemical Industry  相似文献   

4.
《分离科学与技术》2012,47(5):626-634
This study was conducted for the treatment of up-flow anaerobic sludge blanket (UASB) reactor effluent by polymer assisted coagulation–flocculation process. The efficiency of alum, FeCl3, and polyaluminum chloride (PAC) was observed alone and in coupled with anionic polymer (Synpol). The results revealed that FeCl3 and PAC are efficient to remove 99% of turbidity, 83% of total suspended solids (TSS), 82% and 85% of biochemical oxygen demand (BOD) and chemical oxygen demand (COD), respectively, and 99.5% removal of total coliforms (TC) and fecal coliforms (FC). The addition of anionic polymer to alum, FeCl3, and PAC reduces the sludge volume upto 25%.  相似文献   

5.
The aim of this study was to assess the treatment efficiencies for gully pot effluent of experimental vertical‐flow constructed wetland filters containing macrophytes and granular media of different adsorption capacities in a cold climate. For approximately 6 months, nickel nitrate and copper nitrate were added to sieved gully pot effluent in order to simulate contaminated primary treated stormwater runoff. The inflow concentrations for nickel, copper and nitrate were approximately 1.0, 1.0 and 3.7 mg dm?3, respectively. For those filters receiving metals, an obvious breakthrough of nickel was recorded after road gritting (containing salt). Reductions of nickel, copper, biochemical oxygen demand and suspended solids were frequently insufficient compared with international secondary wastewater treatment standards (eg suspended solids <30 mg dm?3). A further treatment step should be considered. Outflow conductivity and nickel concentrations were high due to the effect of road salting. Microbial activity was likely to be responsible for the overall filtration performance. Copyright © 2003 Society of Chemical Industry  相似文献   

6.
Aerobic treatment of refinery wastewater was carried out in a 200 dm3 gas–liquid–solid three‐phase flow airlift loop bioreactor, in which a biological membrane replaced the activated sludge. The influences of temperature, pH, gas–liquid ratio and hydraulic residence time on the reductions in chemical oxygen demand (COD) and NH4‐N were investigated and discussed. The optimum operation conditions were obtained as temperature of 25–35 °C, pH value of 7.0–8.0, gas–liquid ratio of 50 and hydraulic residence time of 4 h. The radial and axial positions had little influence on the local profiles of COD and NH4‐N. Under the optimum operating conditions, the effluent COD and NH4‐N were less than 100 mg dm?3 and 15 mg dm?3 respectively for more than 40 days, satisfying the national primary discharge standard of China (GB 8978‐1996). Copyright © 2005 Society of Chemical Industry  相似文献   

7.
Palm oil mill effluent (POME) is a colloidal suspension with 2–4% suspended solids. About 50% of the suspended solids are cellulosic compounds, which are not degraded in the typical biological treatment systems. Chemical (polymer-induced coagulation) and physical (settling) pretreatment methods were examined to remove the suspended solids in this study. A novel physicochemical treatment with high water recovery and sludge compressibility including three cationic polyacrylamides (C-PAM; as coagulant) and three anionic polyacrylamides (A-PAM; as flocculant) with different molecular weights and charge densities was used. The coagulants used were biodegradable. The combination of a C-PAM (Chemfloc1515C) with medium molecular weight and charge density and an A-PAM (Chemfloc 430A) with high molecular weight and charge density at doses of 300 and 50 mg/dm3 showed the best total suspended solids (TSS) and chemical oxygen demand (COD) removal (96.4 and 70.9%, respectively). The optimal condition was found at pH 5, rapid mixing at 150 rpm for 1 min, and slow mixing at 40 rpm for 30 s. As a conclusion, the physiochemical pretreatment using biodegradable coagulants was a promising alternative to effectively separate TSS (96.4%) with high water recovery (76%).  相似文献   

8.
The effects of Fe(III) on floc characteristics of activated sludge were investigated in nine parallel sequencing batch reactors (SBRs). The results showed that Fe(III) improved the quality of organic matters in the effluent of reactors. Concentrations of Fe(III) up to 23.8 mg dm?3 decreased suspended solids and turbidity in effluent but overdosage resulted in deterioration of these parameters. Activated sludge floc size measurements indicated that Fe(III) led to a shift in the size distribution from large to small flocs. Concentrations of Fe(III) less than 23.8mg dm?3 did not significantly change the proportion of larger flocs, but overdosage of Fe(III) markedly decreased the fraction of larger flocs and produced a large number of smaller flocs, which may be responsible for the deterioration of effluent suspended solids and turbidity. Scanning electronic microscopic (SEM) observation suggested high Fe(III) concentrations lead to significant changes in floc morphology and reduction of filamentous microorganisms available for the formation of large aggregates. Copyright © 2005 Society of Chemical Industry  相似文献   

9.
A. Tawfik  M. Sobhey  M. Badawy 《Desalination》2008,227(1-3):167-177
The feasibility of using an up-flow anaerobic sludge blanket (UASB) reactor followed by activated sludge (AS system) for the treatment of wastewater discharged from dairy factory was explored. The UASB reactor was operated at a hydraulic retention time (HRT) of 24 h and organic loading rates (OLRs) ranging from 1.9 to 4.4 kgCOD/m3.d. The average total chemical oxygen demand (CODtotal) and total biological oxygen demand (BOD5total) concentrations of the UASB reactor effluent were 1385 and 576 mg/l, corresponding to percentage removal of 69% and 79%, respectively. Total suspended solids (TSS) and volatile suspended solids (VSS) removal averaged above 72% and 75%, respectively. Residual phosphorous and oil and grease concentrations of the UASB reactor effluent were 8.2 and 44 mg/l, corresponding to percentage removal values of 63% and 83%, respectively. This good performance could be attributed to the relatively long sludge residence time (SRT = 76 d) imposed to the reactor. Total and faecal coliform counts were reduced in the treated effluent by a value of 1.07 and 0.9 log10, respectively. The net sludge yield coefficient was found to be 0.2 g VSS per g CODtotal removed per day, corresponding to 20% of the total influent COD imposed to the UASB reactor. The volatile solids / total solids (VS/TS) ratio of 0.66 of excess sludge revealed its good quality. Preliminary batch experiments of the AS system treating UASB reactor effluent indicated first-order removal kinetics between total organic carbon (TOC) and contact time. The TOC removal reached 80%, resulting in only 47 mg/l in the final effluent at a HRT of 2.0 h. Accordingly, the AS system was operated at a HRT of 2.0 h. The system achieved a substantial reduction of CODtotal, BOD5 total, TSS and oil and grease resulting effluent quality with residual values of only 35.0, 7.0, 14.0 and 2.8 mg/l, respectively. The geometric mean of total and faecal coliform counts was reduced by a value of 1.28 and 1.64 log10, respectively. Based on these results, it is recommended to use of an integrated system consisting of a UASB reactor followed by the AS system for the treatment of a combined dairy and domestic wastewater to produce a good effluent quality complying with the standards for discharge into agricultural drains.  相似文献   

10.
This study was conducted to investigate the feasibility of a two‐phase anaerobic treatment system for fat‐containing wastewater. The two‐phase system was composed of a continuously stirred tank reactor for acidogenesis and an upflow anaerobic sludge blanket (UASB) reactor for methanogenesis. Its performance was compared with a conventional single‐phase system of a UASB reactor treating synthetic wastewater containing major long‐chain fatty acids (LCFAs). LCFAs did not cause any significant problem up to the LCFA mixture loading rate of 1.21 kg LCFA‐COD m?3 day?1 (3500 mg LCFA‐COD dm?3) in both systems. However, the efficiency of the single‐phase system deteriorated at loading rates above 1.38 kg LCFA‐COD m?3 day?1 (4000 mg LCFA‐COD dm?3), while that of the two‐phase system was still satisfactory. More than 19.2% of LCFAs were degraded and 11.5% of unsaturated LCFAs were saturated in the acidogenesis of the two‐phase system, which led to the enhanced specific methane production rate and the reduced scum layer of the subsequent UASB reactor. Copyright © 2003 Society of Chemical Industry  相似文献   

11.
A 450 dm3 pilot‐scale upflow anaerobic sludge blanket (UASB) reactor was used for the treatment of a fermentation‐based pharmaceutical wastewater. The UASB reactor performed well up to an organic loading rate (OLR) of 10.7 kg COD m?3 d?1 at which point 94% COD removal efficiency was achieved. This high treatment efficiency did not continue, however and the UASB reactor was then operated at lower OLRs for the remainder of the study. Specific methanogenic activity (SMA) tests were, therefore, carried out to determine the potential loading capacity of the UASB reactor. For this purpose, the SMA tests were carried out at four different initial acetate concentrations, namely 500 mg dm?3, 1000 mg dm?3, 1500 mg dm?3 and 2000 mg dm?3 so that substrate limitation could not occur. The results showed that the sludge sample taken from the UASB reactor (OLR of 6.1 kg COD m?3 d?1) had a potential acetoclastic methane production (PMP) rate of 72 cm3 CH4 g?1 VSS d?1. When the PMP rate was compared with the actual methane production rate (AMP) of 67 cm3 CH4 g?1 VSS d?1 obtained from the UASB reactor, the AMP/PMP ratio was found to be 0.94 which ensured that the UASB reactor was operated using its maximum potential acetoclastic methanogenic capacity. In order to achieve higher OLRs with desired COD removal efficiencies it was recommended that the UASB reactor should be loaded with suitable OLRs pre‐determined by SMA tests. © 2001 Society of Chemical Industry  相似文献   

12.
Surplus biological sludge can be used as a low‐cost adsorbent in the removal of heavy metal from wastewater. A three‐zone contact–settling pilot plant was designed and operated to maintain continuous sludge–metal solution contact and subsequent separation of solid–liquid phases, all in the same vessel. Mild agitation was used to ensure good contact between Cu(II) and sludge without impairing solid–liquid separation. Heavy metal removal efficiency was largely unaffected by an increase in the Cu/sludge feed ratio as long as metal binding sites in the sludge remained unsaturated. Maximum metal uptake (75 mg Cu(II) g?1 of total solids in the sludge) was found for Cu/sludge feed ratios ≥ 90 mg Cu(II) g?1 of total solids. Pilot plant metal sorption uptake at different operational conditions correlated well with the calculated values from batch equilibrium adsorption isotherms. The amount of Cu(II) adsorbed on sludge influenced the degree of clarification due to the flocculating effect of Cu(II). Under operational conditions, a high degree of heavy metal removal and efficient clarification were achieved. Pilot plant operation at a Cu/sludge feed ratio around 90 mg Cu(II) g?1 of total solids allowed efficient use of the biosorbent and high heavy metal removal efficiency in addition to a good quality metal‐free effluent in terms of low total suspended solids content. © 2001 Society of Chemical Industry  相似文献   

13.
The upflow anaerobic sludge blanket (UASB) has been used successfully to treat a variety of industrial wastewaters. It offers a high degree of organics removal, low sludge production and low energy consumption, along with energy production in the form of biogas. However, two major drawbacks are its long start‐up period and deficiency of active biogranules for proper functioning of the process. In this study, the influence of a coagulant polymer on start‐up, sludge granulation and the associated reactor performance was evaluated in four laboratory‐scale UASB reactors. A control reactor (R1) was operated without added polymer, while the other three reactors, designated R2, R3 and R4, were operated with polymer concentrations of 5 mg dm?3, 10 mg dm?3 and 20 mg dm?3, respectively. Adding the polymer at a concentration of 20 mg dm?3 markedly reduced the start‐up time. The time required to reach stable treatment at an organic loading rate (OLR) of 4.8 g COD dm?3 d?1 was reduced by more than 36% (R4) as compared with both R1 and R3, and by 46% as compared with R2. R4 was able to handle an OLR of 16 g COD dm?3 d?1 after 93 days of operation, while R1, R2 and R3 achieved the same loading rate only after 116, 116 and 109 days respectively. Compared with the control reactor, the start‐up time of R4 was shortened by about 20% at this OLR. Granule characterization indicated that the granules developed in R4 with 20 mg dm?3 polymer exhibited the best settleability and methanogenic activity at all OLRs. The organic loading capacities of the reactors were also increased by the addition of polymer. The maximum organic loading of the control reactor (R1) without added polymer was 19.2 g COD dm?3 d?1, while the three polymer‐assisted reactors attained a marked increase in organic loading of 25.6 g COD dm?3 d?1. Adding the cationic polymer could result in shortening of start‐up time and enhancement of granulation, which may in turn lead to improvement in the efficiency of organics removal and loading capacity of the UASB system. Copyright © 2004 Society of Chemical Industry  相似文献   

14.
Biological systems for the treatment of wastewater have to provide optimum sludge retention to achieve high removal efficiencies. In the case of slow‐growing micro‐organisms, such as anaerobic ammonia‐oxidizing (Anammox) bacteria, episodes of flotation involving biomass wash‐out are especially critical. In this study a strategy based on the introduction of a mix period in the operational cycle of the Anammox Sequencing Batch Reactor (SBR) was tested for its effects on biomass retention and nitrite removal. Using this new cycle distribution the biomass retention inside the reactor improved as the solids concentration in the effluent of the SBR decreased from 20–45 to 5–10 mg VSS dm?3 and the biomass concentration inside the reactor increased from 1.30 to 2.53 g VSS dm?3 in a period of 25 days. A decrease of the sludge volume index (SVI) from 108 to 60 cm3 g VSS?1 was also observed. Complete depletion of nitrite was achieved in the reactor only with the new cycle distribution treating nitrogen loading rates (g N‐NO2? + g N‐NH4+ dm?3 d?1) up to 0.60 g N dm?3 d?1. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
BACKGROUND: Raw cheese whey originating from white cheese production results in a strong and complex wastewater excessively rich in organic matter (chemical oxygen demand, COD = 28–65 g L?1), fatty matter (14–24.5 g L?1) and acidity (3.9–6.1 g L?1). It was treated in a three‐stage configuration consisting of a pre‐acidification (PA) tank and sequential upflow anaerobic sludge bed reactors (UASBRs) at 2.8–7 g COD L?1 day?1 organic loading rates, during which the effects of effluent recycling at low rates and promoted SRB activity were investigated. Acidification, volatile fatty acids (VFA), COD and fatty matter removal and volatile solids were monitored throughout the system during the study. RESULTS: Recycling of the effluent promoted VFA and COD removal as well as pH stability in both stages of the UASBRs and the effluent where high alkalinity levels were recovered reducing alkali requirement to 0.05 g OH g?1 CODapplied. Higher removal rates of 71–100 and 50–92% for VFA and COD were obtained by use of recycling. Fatty matter was removed at 63–89% throughout the study. Volatile solids build‐up was significant in the inlet zones of the UASBRs. CONCLUSIONS: The system produced efficient acidification in the PA tank, balanced pH levels and an effluent high in alkalinity and BOD/COD ratio. Efficient VFA removal and solids immobilization was obtained in both stages up to the highest loading rate. Recycling improved the system performance under high fatty matter loading conditions. A major advantage of the sequential system was that the second stage UASBR compensated for reduced performance in the first stage. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
To determine whether chemical additions can be used to reduce sludge production in biological wastewater treatment, 3,3′,4′,5‐tetrachlorosalicylanilide (TCS) was added to activated sludge cultures as a metabolic uncoupler. Batch tests confirmed that TCS is an effective chemical uncoupler in reducing the sludge yield at concentrations greater than 1.0 mg dm?3; a TCS concentration of 1.0 mg dm?3 reduced sludge yield by approximately 50%. Substrate removal capability and effluent nitrogen concentration were not affected adversely by the presence of TCS when dosed every other day in a range of 2.0–3.6 mg dm?3 during the 40‐day operation of activated sludge batch cultures. Such sludge growth reduction was associated with the enhancement of microbial activities in terms of the specific oxygen uptake rate and dehydrogenase activity. Sludge settleability of the treated and control samples was qualitatively comparable and not significantly different. Filamentous bacteria continued to grow in sludge flocs only in the control reactor at the end of the 40‐day trial. These results suggest that TCS treatment of activated sludge systems may reduce excess sludge yield. Copyright © 2003 Society of Chemical Industry  相似文献   

17.
Palm oil mill effluent was treated anaerobically in 210 dm?3 tank digesters in which inoculation with anaerobic seeding coupled with careful addition of lime could shorten the natural stabilisation process to about 30 days. The system was subsequently scaled up to 500 tonnes capacity. The characteristics of the anaerobically digested liquors were studied at 10 and 20 days hydraulic retention time (HRT) respectively, and close to 90% treatment efficiency could be achieved at 20 days HRT with complete microbial conversion of plant cell debris. However, the digested liquor still contained 0.325% (by wt) suspended solids. The kinetics of the anaerobic process show close resemblance to those treating other high strength organic wastes. Optimum gas production occurred only over a narrow pH range of 6.8–7.2 units. A methane content of 62–67% on gas production was noted about equivalent to 0.34 to 0.39 dm?3 CH4 g?1 of BOD destroyed.  相似文献   

18.
Pilot‐plant studies on the treatment of three wastewaters (biological aerated flooded filter (BAFF) backwash water, post‐primary settling tank effluent and BAFF effluent) have been conducted using a ballasted sedimentation process (ACTIFLO®) coupled with ferric chloride and polyaluminium chloride (PACl) coagulants. The response of the process to shock loads of high solids concentrations was also investigated. Results showed over 80% turbidity, 70% suspended solids, and 50% COD removals to be achievable at rise rates in excess of 80 m h?1 and dose rates of 10–20 mg dm?3 Fe. Slightly improved performance was attained using PACL at half the weight concentration (but about the same molar concentration) as that of Fe. No pH adjustment was necessary and process performance was not significantly influenced by changes in hydraulic loading rate. Effluent quality was largely unaffected by shock organic loads provided coagulant dosing was commensurately increased. Non‐ideal flow through the plant was apparent from the measured residence time, which was ~25% less than that calculated for plug flow. Clarification data were comparable to those reported for other high‐rate clarification (HRC) processes, with somewhat improved performance in terms of hydraulic retention time and coagulant use. Copyright © 2004 Society of Chemical Industry  相似文献   

19.
The anaerobic digestion of alkaline black liquor from a cereal straw pulping mill was studied in batch (serum bottles) and continuous systems (up-flow anaerobic sludge blanket reactor—UASB). The batch digestion studies confirmed that lignin and related compounds (LRC) in the alkaline black liquor were the main inhibitory substances and could not be decomposed by anaerobic bacteria. At organic loading rates of 5–10 kg COD m?3 day?1, the UASB reactor achieved 50–60% COD removal efficiencies. Gas production was 2–3 dm3 per dm3 of alkaline black liquor. Two different sludge types were examined in the reactor: granular and cluster-like sludges. Sludge in a cluster, which involved many small granules and flocs, tended to form larger aggregates and possessed good settling ability.  相似文献   

20.
The specific activity of acetotrophic methanogens and the physical behaviour of granular sludge in laboratory-scale upflow anaerobic sludge bed (UASB) reactors subjected to shock loads of lauric acid in the absence and presence of calcium were studied. In the absence of calcium, lauric acid completely inhibited acetotrophic methanogens above a threshold level of 100 mg C12:0dm?3, whereas no inhibition occurred below this threshold concentration. Addition of an equivalent amount of calcium to wastewater containing lauric acid prevented inhibition of acetotrophic methanogens at least up to 1500 mg C12:0dm?3. Addition of less than an equivalent amount of calcium apparently removed more than a stoichiometric amount of lauric acid: 50 % inhibition occurred at approximately 700 mg ‘free’ or excess C12:0dm?3. The results indicate that complete sludge wash-out from conventional UASB reactors is likely to occur within 2-8 h if the system is overloaded with an influent containing more than 100 mg C12:0dm?3. Calcium did not prevent wash-out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号