首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 374 毫秒
1.
The aim of this study was to investigate the effect of heat‐treated lignocellulosic filler on the surface characteristics and decay resistance of the wood flour/styrene maleic anhydride (SMA) composites. In this study, heat treatment was conducted at 212°C for 8 hours. Test specimens were prepared by injection molding at 220°C. Weathering tests were performed by cycles of UV‐light irradiation for 8 hours, water spray for 15 minutes, and then conditioning for 3.45 hours in an accelerated weathering test cycle chamber. Heat‐treated wood flour/SMA composites were evaluated for color changes, and attenuated total reflectance Fourier transform infrared (FTIR) spectroscopy was used to analyze chemical changes on the sample surfaces. The wood decay tests were performed of white rot fungus, Trametes versicolor (L.: Fr.) Pilat was based on mini‐block specimens on 48% malt extract agar in petri dishes. The study showed that color changes occurred when heat‐treated filler rate is increased in this material. Therefore, materials in 10% filler rate show lower color changes than other variation. As a result of the FTIR analysis, the addition of wood filler into the SMA causes changes in the chemical structure. In addition, the increase in wood filler reduced the resistance to weathering. Decay results showed that thermally modified wood has lower mass loss caused by fungal attack than untreated wood material. The weight loss decreases with the increase in wood flour rate expect 10%T and 10%UT in all composites.  相似文献   

2.
Abstract

In this study, polystyrene modified Scots pine (Pinus sylvestris L.) wood was investigated upon artificial weathering, decay resistance, dimensional stability and water uptake properties. Polystyrene modification was carried out on pretreated wood by immersion of wood into styrene monomer and further polymerization. The resistance of modified wood against cycles of UV and water exposures was examined by artificial weathering test for 672?hours, and decay resistance was evaluated by attacks of Coniophora puteana and Trametes versicolor on the samples. During the artificial weathering, color and surface roughness of the samples, and macroscopic changes were determined periodically. Changes in the surface chemistry and morphology of the weathered samples were investigated by ATR-FTIR and SEM, respectively. It was proven that polystyrene effectively protected pine samples from both fungi even after leaching procedure, but it was more effective in preventing C. puteana attacks than T. versicolor attacks. As a result of artificial weathering, the surface of all samples was darkened. However, changes in color and roughness as well as crack formations of the modified sample surfaces were found less than those of the untreated samples. Polystyrene also provided considerable improvement on dimensional stability, as well as water repellence of wood.  相似文献   

3.
Longer weathering exposure periods are more reliable for end‐use performance evaluations of wood surfaces. This study aimed to investigate the effect of boron impregnation on the surface composition and color of Scots pine (Pinus sylvestris L.) wood exposed to 18 months of natural weathering in the West Black Sea Region of Turkey. All measurements were performed at 6 month intervals. Samples were first impregnated with boron compounds and then for a second time using five different water‐repellent materials. Polyethylene glycol and aluminum sulfate were introduced with the boric acid as single impregnations. With increased weathering time, the samples darkened, while sodium silicate kept the color change to a minimum. Nano boron‐impregnated samples exhibited more effective results than those impregnated with boric acid. The FTIR analysis results demonstrated that the impregnation process had caused significant changes in the chemical structure of the samples. The changes in the chemical structure of the wood resulting from the impregnation process were partially maintained during the weathering.  相似文献   

4.
Scots pine samples, heat‐treated (225°C under steam) and reference (kiln‐dried), were exposed to natural weathering for 7 years in Espoo, Finland. The weathered and unweathered samples were examined with FTIR, UV resonance Raman, and 13C CPMAS NMR spectroscopies. The spectroscopic results revealed that the lignin contents of the weathered heat‐treated and especially of the weathered reference softwood samples diminished significantly. The surface of the weathered heat‐treated sample was still rich in aromatic and conjugated carbonyl structures, whereas the surface of the reference sample was enriched with cellulose. These results indicated that weathering products of lignin were leached out with water from the reference sample, whereas in the heat‐treated wood they were largely unleachable. The structure of the heat‐treated wood was modified and degradation products did not leach out as easily as in the case of the reference sample. The weathering also resulted in a decreased content of amorphous polysaccharides of the reference sample, whereas the changes in the polysaccharide contents between weathered and unweathered heat‐treated samples were not as dramatic because the amorphous carbohydrates were already degraded in the heat treatment. The results indicated that heat‐treated wood is more resistant to natural weathering than untreated wood. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2128–2134, 2004  相似文献   

5.
Wood–polymer composites (WPCs) were prepared from poplar wood (P. ussuriensis Komarov) in a two‐step procedure. Maleic anhydride (MAN) was first dissolved in acetone and impregnated into wood; this was followed by a heat process; and then, glycidyl methacrylate (GMA) and styrene (St) were further impregnated into the MAN‐treated wood, followed by a second thermal treatment. Finally, the novel WPC was fabricated. The reactions occurring in the WPC, the aggregation of the resulting polymers, and their interaction with the wood substrate were analyzed by scanning electron microscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, and dynamic mechanical analysis. The performance of WPC was also evaluated in terms of the mechanical properties and durability, which were then correlated with the structural analysis of the WPC. The test results show that MAN and GMA/St chemically reacted with the wood cell walls in sequence, and the quantity of hydroxyl groups in the wood cell walls was evidently reduced. Meanwhile, St copolymerized with GMA or MAN, and the resulting polymers mainly filled in the wood cell lumen in an amorphous form, tightly contacting the wood cell walls without noticeable gaps. As a result, the mechanical properties, decay resistance, and dimensional stability of the WPC were remarkably improved over those of the untreated wood, and its glass‐transition temperature also increased. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
In this article, the effects of bio‐oil and epoxidized linseed oil (ELO) on water absorption, tangential swelling, decay and insect resistance, thermo‐gravimetric analysis, and mechanical properties of treated wood samples were studied. The bio‐oil used in this article was by‐product of ThermoWood thermal modification process. Linseed oil and hydrogen peroxide were used to prepare ELO. The results indicated that the samples treated with bio‐oil had lower water absorption than that of the control group. The second treatment with ELO significantly reduced further the water absorption. The decay resistance of treated wood samples with 20% of bio‐oil against brown (Coniophora puteana) and white rot (Trametes versicolor) fungi was very high. According to the insect test results, increasing bio‐oil concentration from 10% to 20% significantly decreased surviving rate of Hylotrupes bajulus. Thermo‐gravimetric analysis showed that all treated samples had higher initial deterioration temperature than that of the control group. Regarding the wood strength, the impregnated bio‐oil generally reduced the mechanical properties of wood except modulus of elasticity (MOE). © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1562–1569, 2013  相似文献   

7.
The aim of this study was to determine selected surface properties of varnished beech wood impregnated with natural extracts after exposure to accelerated weathering. Beech wood samples were impregnated with aqueous solutions of 5 and 10% mimosa (Acacia mollissima) and quebracho (Shinopsis lorentzii) tannins. After weathering, colour changes (ΔL*, Δa*, Δb*, and ΔE*) in addition to scratch resistance and surface hardness values were calculated and evaluated. As a result of the weathering process, greater colour changes (ΔE*) were detected in the beech wood samples impregnated with tannins compared with the unimpregnated control samples. The least colour change occurred in the Tanalith-E-impregnated samples. Total colour change was adversely affected with tannin impregnation after the weathering processes. In terms of surface hardness and scratch resistance, the highest values were observed in the mimosa-solution-impregnated and control samples. Furthermore, it was found that scratch resistance and hardness values tended to increase during the first period of weathering and decreased thereafter. Regarding surface properties, the best results were obtained when polyurethane varnish was employed compared with the other varnish types.  相似文献   

8.
When exposed to moisture, wood undergoes swelling and is susceptible to fungal degradation. Chemical modification via oligomeric lactic acid (OLA) treatment has been found to be a promising environmentally friendly solution to this disadvantage. In this study, wood was impregnated with OLA and then variously heat treated to polymerize the OLA in situ. The effect of curing temperature and time on OLA polymerization has been determined chemically. Dimensional stability was examined by water immersion and hygroscopicity measurements and biological decay resistance also evaluated. OLA impregnation followed by heat treatment enhanced wood properties. OLA cure at 160?°C for 48?h resulted in treated wood with greater dimensional stability and biological resistance.  相似文献   

9.
Southern yellow pine (SYP) was impregnated with melamine-formaldehyde (MF) or melamine-ammeline-formaldehyde (MAF) resins. The dimensional stability, strength properties, weathering, fire resistance and chemical resistance of the impregnated wood were examined. The wood treated with two commercial MF resins or with a synthesized MAF resin exhibited greatly enhanced dimensional stability, fire resistance and resistance to weathering. The chemical resistance increased moderately.  相似文献   

10.
This study aimed to determine the effect of accelerated weathering on gloss, surface hardness and colour changes of Scots pine (Pinus sylvestris L.). Test samples were impregnated with Adolit KD‐5, Wolmanit CX‐8 and Celcure AC‐500 covered with cellulosic and polyurethane varnishes. The results showed that the values of surface hardness and gloss increased after accelerated weathering. While the surface hardness of Scots pine was increased for impregnated and polyurethane‐coated varnish, it decreased for impregnated and cellulosic varnish‐coated Scots pine after 1000 hours of accelerated weathering exposure. Copper‐based chemical impregnation and varnish coating developed the gloss of Scots pine specimens relative to the surface characteristics observed in single‐coated Scots pine specimens. While the most appropriate chemical was Celcure AC‐500 for surface hardness, it was Adolit KD‐5 for the gloss of Scots pine after 1000 hours of accelerated weathering exposure. Wood specimens impregnated prior to the application of varnish were more effective in stabilising the colour of Scots pine than Scots pine only coated with varnish. Polyurethane varnish‐treated Scots pine showed better colour stability for each partial and total accelerated weathering exposure period. The total colour changes were lowest for polyurethane varnish‐coated Scots pine impregnated with Celcure AC‐500 after 1000 hours of accelerated weathering exposure.  相似文献   

11.
The photostabilization of wood surfaces is desirable to enhance the life of wood under exterior use and to improve the performance of clear coatings on wood surfaces. Chemical modification of wood has been found effective in upgrading properties such as biological durability and dimensional stability and has been suggested as a potential way for inducing photostability on wood surfaces. In this study, the photostability of chemically modified wood was assessed under accelerated weathering conditions. Wood specimens of Pinus roxburghii (Chir pine) were esterified with benzoyl chloride to 19.5 wt % gain and exposed to a xenon arc light source in a Weather‐O‐Meter for different periods ranging from 0 to 500 h. The irradiated samples were analyzed for color changes and chemical changes. The analysis of color changes in wood surfaces by ultraviolet–visible irradiation was carried out with a color measuring (CIELAB) system, and chemical changes were characterized with fluorescence and Fourier transform infrared spectroscopy. The esterification of wood by benzoyl chloride suppressed the color changes (photodiscoloration) due to irradiation. Modification also reduced the lignin degradation and generation of carbonyl groups on the surface of the irradiated wood. The fluorescence emission spectra of irradiated unmodified wood showed a large reduction in intensity and a large redshift in the emission maximum, whereas modified wood showed only a small change in fluorescence intensity on irradiation. The results show that the esterification of wood with benzoyl chloride was effective for the photostabilization of the wood polymers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

12.
Ultraviolet (UV) weathering performance of unpigmented and rutile titanium dioxide pigmented rigid polyvinyl chloride (PVC)/wood‐fiber composites has been studied. The composite samples were manufactured by dry‐blending PVC, wood fibers, and other processing additives in a high‐intensity mixer. The dry‐blended compounds were extruded and compression molded into panel samples. The manufactured samples were artificially weathered using laboratory accelerated UV tests. Composite samples were exposed to 340‐nm fluorescent UV lamps and assessed every 200 h, for a total of 1200 h of accelerated weathering. Each assessment consisted of a visual examination of surface roughness or erosion, a contact angle measurement, a FTIR collection, and a color measurement. The experimental results indicated that wood fibers are effective sensitizers and that their incorporation into a rigid PVC matrix has a deleterious effect on the ability of the matrix to resist degradation caused ultraviolet irradiation. The light stability of these composites could be improved quite efficiently with the addition of rutile titanium dioxide photoactive pigment during formulation. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1943–1950, 2001  相似文献   

13.
Wood, as a natural and renewable resource, is a popular material for construction, but its fire performance restricts its utilization. In addition, for example, the mechanical properties of wood have up till now been impaired by the most common fire retardants, and therefore, the investigation of wood modification with not‐weakening flame retardants is essential. This study investigates the effects of melamine impregnation and heat treatment on the fire performance of Scots pine (Pinus sylvetris L.). The treated samples were tested with a cone calorimeter, and the following features were studied: time to ignition, heat release, smoke production, and mass loss. The heat‐treated samples became more homogenous as regards the results of fire performance. Some of the examined fire behavior values decreased because of heat treatment, while the same values increased after the combination of melamine impregnation and heat treatment. The smoke production was reduced the most for the samples that were both impregnated and heat treated. Although the influence of treatment on the fire behavior properties of solid wood was relatively marginal, it was assumed that these treatments will not have a negative impact on the fire‐resistance properties of pine wood. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The effects of ultraviolet light irradiation and water spray and temperature cycling on the color stability of waterborne coating systems on spruce were investigated. The test samples were treated with three coating systems (white and brown pigmented acrylate waterborne coatings systems with different layering) from six producers. The artificial weathering was carried out based on standardized (504 h) and increased weathering parameters (504 h). Thirty cycles of temperature changes were performed. Discoloration suggesting the rate of degradation process and color stability was measured by a spectrophotometer in L*a*b* color space. The results showed greater color stability of white coating systems during both experiments. The producer of acrylate coatings with iodopropynyl butyl carbamate and permethrin as biocides and benzotriazole, silicon dioxide and methylsiloxane as additives was characterized by the best coatings performance. The most sensitive color parameter to describe the surface quality as a result of irradiation and water spray has proven to be a change of lightness. A tendency towards degradation with increasing lightness was observed during weathering. The effect of temperature itself on color change was minimal. Scanning electron microscopy and energy dispersive spectroscopy revealed microscopic changes of coatings caused by artificial weathering.  相似文献   

15.
This study evaluated the effect of accelerated weathering on the adhesion strength and surface roughness of beech wood (Fagus orientalis) treated with mimosa and quebracho extracts and coated with polyurethane, water-based, and cellulosic varnishes. Untreated beech wood blocks and beech wood blocks treated with Tanalith-E were used as control samples. Test samples were exposed to accelerated weathering processes of 100 and 300 h. According to the test results, the mean adhesion strength of the wood samples impregnated with mimosa and quebracho tannins decreased by a maximum of 20%, while increases in the mean surface roughness (R a) were detected. The highest adhesion strength and lowest mean surface roughness were obtained with polyurethane varnish. Moreover, the mean adhesion strength increased with the accelerated weathering up to 100 h and then decreased thereafter. As a result of the weathering process, the mean surface roughness increased and was thus negatively affected.  相似文献   

16.
Poplar samples were impregnated with ammonium polyphosphate fire retardant at various pressures and durations after they were pretreated with microwave heating. The effects of the pressure and duration on the flame‐retardation and smoke‐suppression properties were investigated with cone calorimeter analysis. The peak heat release rate (pk‐HRR), total heat release (THR), and total smoke product (TSP) of treated woods were measured for samples of pretreated and untreated with microwave. After the impregnation, the poplar wood showed the significant improvement in its fire resistance. Compared with non‐impregnation wood, the pk‐HRR, THR, and TSP of wood impregnated with ammonium polyphosphate at pressure of 0.4 MPa and duration of 10 min were 48.29%, 35.58%, and 68.64% less, respectively. The pk‐HRR, THR, and TSP of microwave pretreated wood was 15.89%, 5.69%, and 13.59% less than those without microwave pretreated sample. The microwave pretreatment of wood can increase fire retardant effectiveness of ammonium polyphosphate‐impregnated wood. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
This study investigated antifungal properties of four different tannins as potential environmentally friendly wood preservatives. Scots pine wood samples were impregnated with 3, 5, 10, and 15% valonia, chestnut, tara, and sulphited oak tannins, and then were exposed to brown rot fungi Coniophora puteana and Postia placenta, and white rot fungi Trametes versicolor and Pleurotus ostreatus attack to determine the best tannin type and the optimum concentration level for sufficient decay resistance. Leaching test was conducted in order to evaluate any loss in effectiveness in decay resistance due to possibility of tannin leaching. Tannins were found efficacious in suppressing brown rot fungi attacks when no leaching prior the decay test was used, however, they seemed to be ineffective against white rot fungi attacks. The lowest weight losses were obtained with valonia and chestnut tannins both for brown and white rot fungi probable related with their high ellagic tannin content.  相似文献   

18.
Colour evolution and colour changes were analyzed from small specimens of three heat treated wood species using the CIE L*a*b* colour space. Upon heat exposure, the wood substance became darker of species; this was accompanied by a steady reduction in lightness. As treatment conditions (e.g., time and temperature) increase, various shades of yellow were favoured for the surface of red‐bud maple wood (Δb = 1.22–9.79). For European hophornbeam wood, increased times at elevated temperatures make a blue (?b) colour the better choice. The total colour difference (ΔE) of the surfaces of wood substrates appear to be well correlated with the treatment temperature and time. The FTIR spectra suggest that the level of modification was insufficient for removing the major cell wall constituents of the wood substrates. All heat‐treated samples showed much less stability against colour difference in outdoor conditions. For red‐bud maple, the greatest improvement was achieved for samples that were treated at 150°C for 2 h (ΔE = 3.12). However, heat‐treated oak wood hadmuch less stability of colour difference for treatment conditions of 150°C for 10 h. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2010.  相似文献   

19.
《Polymer Composites》2017,38(3):571-582
The effects of natural weathering on the visual appearance and chemical changes of wood plastic composite (WPC) formulations based on post‐consumer polypropylene/ethylene vinyl acetate (PP‐EVA) matrix were investigated. The WPC composition used was 70/30 (w/w) (recycled PP‐EVA/wood flour). Besides, the effectiveness of using coupling agent on adhesion of WPC and its influence in degradation were evaluated. Colorimetry, scanning electron microscopy, Fourier transform infrared spectroscopy, mechanical test, and biodegradation in simulated soil after natural weathering were used in this research. The results showed the samples with longer exposure time to natural weathering presented significant color change, increased in carbonyl index, and wood loss on weathered WPC surfaces. Weathered WPC exhibited decreased in mechanical properties, higher mass loss after biodegradation test when compared with no weathering WPC, reaching to 15.0% mass loss against 3.7%, respectively. Climatic conditions directly affect the characteristics of all composites, thus indicating a significant photo‐oxidation of the samples with a longer time of exposure to weathering, and this natural ageing has facilitated the WPC biodegradation . POLYM. COMPOS., 38:571–582, 2017. © 2015 Society of Plastics Engineers  相似文献   

20.
Wood used in outdoor applications needs to undergo either chemical or thermal treatment to improve its decay resistance. Thermal treatment permits to avoid the use of toxic chemicals, increases the dimensional stability and gives a dark color to the wood. However, this process deteriorates the mechanical properties of wood, i.e., the wood becomes more fragile and rigid. The chemical transformation of wood that takes place during the heat treatment changes the interaction between the wood surface and the adhesive. In this work, the interfacial bonding strength (the resistance to the shear stress by compression in parallel direction to the glued interface) and cyclic delamination (resistance to delamination during accelerated exposure) for different wood species and adhesives were tested in accordance with the ASTM D2559 standard. Four wood species: scott pine (Pinus sylvestris), aspen (Populus tremuloides), yellow poplar (Liriodendron tulipifera) and jack pine (Pinus banksiana) both treated and non-treated, and two structural adhesives, phenol resorcinol formaldehyde (PRF) and polyurethane (PUR), were used in the testing. Among the studied species, jack pine is found to be the easiest to bond, while aspen is found to be the most difficult. With the wood species and adhesives evaluated in this study, non-treated wood is found to provide a better bonding strength than the treated wood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号