首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel superabsorbent nanocomposite based on partially neutralized acrylic acid, waste polystyrene foam, and sodium type montmorillonite (Na‐MMT) powder was synthesized through emulsion polymerization using N, N′‐methylenebisacrylamide as a crosslinker, 2,2′‐azo‐bisiso‐butyronitrile, ammonium persulfate, and sodium sulfite as mixed redox initiators. The effects of such factors as amount of Na‐MMT, crosslinker, initiator, and neutralization degree on water absorbency of the superabsorbent were investigated. The composites were characterized by Fourier transform infrared spectroscope, X‐ray diffraction, thermo gravimetric analysis, and scanning electron microscope. The results show that acrylic acid monomer successfully grafted onto the polystyrene chain, the layers of Na‐MMT were exfoliated and dispersed in the composite at nano size after copolymerization. The introduction of waste polystyrene foam in the composite increased the water absorbency rate. The addition of Na‐MMT not only enhanced the thermal stability of the composites but also increased its water absorbency, and the optimal water absorbencies of distilled water and saline water (wNaCl = 0.9%) of the nanocomposites were more than 1180 g H2O/g and 72.6 g H2O/g, respectively. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2341–2349, 2007  相似文献   

2.
A novel superabsorbent nanocomposite was synthesized through intercalation polymerization of partially neutralized acrylic acid, gelatinized dextrin, and an organic-montmorillonite powder using N,N-methylenebisacrylamide as a crosslinker, Span-60 as a dispersant, and ammonium persulfate together with sodiumsulfite as a type of mixed redox initiator. Effects of the amount of them on water absorbency of the superabsorbent were investigated. The structure and the morphology of the nanocomposite were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and transmission electron microscopy analysis. The blood compatibility of the composite was primarily measured. The results show that the acrylic acid monomer was successfully intercalated into the organic-montmorillonite layers and bonded with them. The superabsorbent nanocomposite synthesized under optimal conditions with an organic-montmorillonite powder content of 5 wt% exhibit an absorption of 725.3 g/g in distilled water and favorable blood compatibility. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

3.
A novel poly (acrylic acid)/sodium humate superabsorbent composite was synthesized by graft copolymerization reaction of acrylic acid (AA) on sodium humate micropowder using N,N′‐methylenebisacrylamide (MBA) as a crosslinker and potassium peroxydisulfate (KPS) as an initiator in aqueous solution. The effects on water absorbency of factors such as reaction temperature, initial monomer concentration, and degree of neutralization of AA, amount of crosslinker, initiator, and sodium humate were investigated. The superabsorbent composite was characterized by scanning electron microscopy, and the graft copolymerization reaction of AA on sodium humate micropowder was characterized by IR spectroscopy. Results obtained from this study show that the water absorbency of the superabsorbent composite synthesized under optimal conditions for synthesis with a sodium humate content of 5.3% exhibited absorption of 684 g H2O/g sample in distilled water. Water‐retention in soil is enhanced by the use of the superabsorbent composite. The effect of superabsorbent composite on the growth of corn is reported. The superabsorbent composite may be of use as water management materials for agriculture purposes in desert and drought‐prone areas. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5137–5143, 2006  相似文献   

4.
A new cellulose‐based superabsorbent polymer, carboxymethyl cellulose‐graft‐poly(acrylic acid‐co‐acrylamide), was prepared by the free‐radical grafting solution polymerization of acrylic acid (AA) and acrylamide (AM) monomers onto carboxymethyl cellulose (CMC) in the presence of N,N′‐methylenebisacrylamide as a crosslinker with a redox couple of potassium persulfate and sodium metabisulfite as an initiator. The influences of reaction variables such as the initiator content, crosslinker content, bath temperature, molar ratio of AA to AM, and weight ratio of the monomers to CMC on the water absorbency of the carboxymethylcellulose‐graft‐poly(acrylic acid‐co‐acrylamide) copolymer were investigated. The copolymer's structures were characterized with Fourier transform infrared spectroscopy. The optimum reaction conditions were obtained as follows: the bath temperature was 50°C; the molar ratio of AA to AM was 3 : 1; the mass ratio of the monomers to CMC was 4 : 1; and the weight percentages of the crosslinker and initiator with respect to the monomers were 0.75 and 1%, respectively. The maximum water absorbency of the optimized product was 920 g/g for distilled water and 85 g/g for a 0.9 wt % aqueous NaCl solution. In addition, the superabsorbent possessed good water retention and salt resistance. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1382–1388, 2007  相似文献   

5.
A superabsorbent composed of waste polystyrene, starch, and acrylic acid was prepared through emulsion polymerization. The effects of major factors such as starch, acrylic acid, initiator, crosslinker, and bentonite contents and the neutralization degree of acrylic acid on water absorbency were investigated to obtain optimum conditions with high swelling capacity. The superabsorbent hydrogel was characterized by scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA). The FTIR results confirmed that the grafting polymerization took place among the polystyrene, acrylic acid, starch, and bentonite. The introduction of bentonite particles into the polystyrene‐g‐poly (acrylic acid)‐co‐starch system could increase the water absorbency. The superabsorbent composite containing 3 wt % bentonite had the highest water absorbency (500 g/g in distilled water and 49 g/g in 0.9 wt % NaCl solution). © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
李丹  刘翠云  刘红宇  罗洁  张玉清 《广州化工》2010,38(10):102-104
以丙烯酸和蒙脱土为主要原料,采用反相悬浮法合成了聚丙烯酸钠/蒙脱土复合高吸水性树脂,研究了交联剂用量、蒙脱土用量等因素对树脂吸液性能的影响,确定了最佳实验条件,在此条件下制备的复合树脂对去离子水和0.9%NaC l水溶液的吸水率分别为800g/g和92g/g,适量蒙脱土的加入可提高吸水性树脂的保水性能,FTIR初步表明蒙脱土与聚丙烯酸钠之间发生了交联反应。  相似文献   

7.
A novel poly(acrylic acid)/montmorillonite superabsorbent composite with a water absorbency of 1100 times its own weight was synthesized by the graft copolymerization of acrylic acid with a cross‐linking agent in the presence of montmorillonite ultrafine powder. The influence of the amount of crosslinker and montmorillonite on water absorbency has been investigated. It was found that a crosslinker concentration of 0.03 wt% and 30 wt% montmorillonite gave the best results. The collaborative absorbent effect of sodium carboxylate and carboxylic acid groups was superior to that of sodium carboxylate or carboxylic acid groups alone, and the composite with a ratio of about 2/3 for sodium carboxylate to carboxyl acid groups possessed the highest water absorbence. © 2001 Society of Chemical Industry  相似文献   

8.
A novel salt‐resistant superabsorbent polymer was synthesized by solution polymerization from the monomer acrylic acid (AA) with potassium persulfate as the initiator. Sodium tungstate was first employed as a crosslinker in the preparation to achieve a better crosslinked polymer (WPAA). In addition to the xerogel WPAA, sodium hydroxide and tris(2‐hydroxyethyl)amine (TEA) were introduced for the preparation of WPAA–sodium and WPAA–TEA hydrogels, respectively. The effect on the water absorbency of factors such as the reaction temperature, degree of neutralization of AA, and amounts of the crosslinker sodium tungstate and the initiator were investigated. The crosslinked xerogels were characterized with infrared spectroscopy. These crosslinked superabsorbent composites with sodium tungstate were characterized with thermogravimetric analysis and scanning electron microscopy. The water absorbencies of these superabsorbent composites in water and saline solutions were investigated. Results obtained from this study showed that under the same synthesis conditions, in comparison with superabsorbent composites with an aluminum salt as a crosslinker and styrene as a graft copolymer, the salt resistance of the superabsorbent composite synthesized with sodium tungstate as a crosslinker was obviously enhanced. Moreover, the WPAA–TEA xerogel had absorbency values of 223.6 and 81.9 g/g for distilled water and a 0.9 wt % NaCl solution, respectively, and it showed better salt resistance and a better water‐absorbing rate than the WPAA–sodium xerogel because of the modification with triethanolamine. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
A novel poly(acrylic acid)/attapulgite (APT)/sodium humate (SH) superabsorbent composite was synthesized through the graft copolymerization reaction of acrylic acid on APT micropowder and SH with N,N′‐methylene bisacrylamide as a crosslinker and ammonium persulfate as an initiator in an aqueous solution. Various effects on the water absorbency, including the amounts of the crosslinker, initiator, APT, and SH, were investigated. The superabsorbent composite was characterized with Fourier transform infrared spectroscopy and scanning electron microscopy. The superabsorbent composite synthesized under optimal synthesis conditions with an APT concentration of 20% and an SH concentration of 20% exhibited absorption of 583 g of H2O/g of sample and 63 g of H2O/g of sample in distilled water and in a 0.9 wt % NaCl solution, respectively. The slow‐release property of SH from the superabsorbent composite into water was measured, and a test of the water retention of the superabsorbent composite in soil was also carried out experimentally with and without the superabsorbent composite. The results showed that the superabsorbent composite had not only good water retention but also an additional slow‐release property of SH. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 37–45, 2007  相似文献   

10.
薛锋锋 《精细化工》2011,28(8):737-741
采用水溶液聚合法,以丙烯酸(AA)、丙烯酰胺(AM)、乙酸乙烯酯(VAc)为单体,有机膨润土(OMMT)为复合微粒,反应得到了P(AA-AM-VAc)/OMMT复合高吸水性树脂。通过单因素实验考察了聚合温度、单体组成、引发剂用量、交联剂用量、丙烯酸中和度、有机膨润土掺入量对复合树脂吸液率的影响,获得了最佳工艺条件。结果表明,在最佳工艺条件下制备的复合高吸水性树脂对纯净水和w(NaC l)=0.9%水溶液的吸收倍率分别为695 g/g和113 g/g。  相似文献   

11.
To improve the utilization of fertilizer and water resource at the same time, a new type of slow‐release fertilizer with superabsorbent and moisture preservation was developed, with the combination of slow‐release technique and superabsorbent polymers. The coatings were formed by the inverse phase polymerization technique. The element analysis results showed that the product contained 22.58% nitrogen element, and the water absorbency of the product was 94 times its own weight if it was allowed to swell in tap water at room temperature for 2 h. The results of the slow‐release behavior of N and the water absorbency and retention properties in soil showed that the product not only had good slow‐release property but also had excellent water absorbency and water retention capacity, which was a significant advantage over the normal slow‐release or controlled‐release fertilizers. The effects of the amount of initiator, crosslinker, reaction time, and the degree of neutralization of acrylic acid on water absorbency were investigated and optimized. At the same, a rather new and simple method was used to make homogeneous urea‐formaldehyde granules. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3230–3235, 2006  相似文献   

12.
A novel chitosan‐g‐poly(acrylic acid)/organo‐rectorite (CTS‐g‐PAA/OREC) nanocomposite superabsorbent was synthesized by aqueous polymerization using N, N′‐methylenebisacrylamide as a crosslinker and ammonium persulfate as an initiator. Rectorite was organified with four different degree of hexadecyltrimethyl ammonium bromide, and the organification of rectorite was proved by FTIR and XRD. The effect of organification degree of rectorite on water absorbency of CTS‐g‐PAA/OREC with different organo‐rectorite content was investigated. The swelling behaviors in distilled water and various pH solutions were also studied. The results from IR spectroscopy and XRD data show that acrylic acid had been grafted polymerization with chitosan and organo‐rectorite and formed nanocomposite. Introducing organo‐rectorite into the CTS‐g‐PAA polymeric network can improved water absorbency and swelling rate of CTS‐g‐PAA/OREC. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
In this work, a series of novel hydroxyethyl cellulose‐ g‐poly(acrylic acid)/attapulgite (HEC‐g‐PAA/APT) superabsorbent composites were prepared through the graft polymerization of hydroxyethyl cellulose (HEC), partially neutralized acrylic acid (AA), and attapulgite (APT) in aqueous solution, and the composites were characterized by means of Fourier‐transform spectroscopy, scanning electron microscopy, and transmission electronmicroscopy. The effects of polymerization variables including concentrations of the initiator and crosslinker and APT content on water absorbency were studied, and the swelling properties in various pH solutions as well as the swelling kinetics in various saline solutions were also systematically evaluated. Results showed that the introduction of 5 wt% APT into HEC‐g‐PAA polymeric network could improve both water absorbency and water absorption rate of the superabsorbent composites. In addition, the superabsorbent composites retained high water absorbency over a wide pH range of 4–10, and the swelling kinetics of the superabsorbent composites in CaCl2 and FeCl3 solutions exhibited a remarkable overshooting phenomenon. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

14.
采用真空技术成功制备了一种木薯淀粉(CS)-g-丙烯酸(AA)超吸水材料。在AA与cS质量比2.5:l,过硫酸钾0.07g,30%wt氢氧化钠水溶液中和度(摩尔比)20%,N,N’-弧甲基双丙烯酰胺0.14%(占AA重)条件下,65℃真空恒温反应3h,干燥后得超吸水材料(cs.SAP)。一定温度湿度条件下,不同形状CS—SAP吸液能力及保水性能有一定差别,保留4%凝胶残重的材料保水时间最长可达28d:材料吸去离予水倍率高达1316.8(g/g)、自来水673.1(g/g)、0.9%NaCI水溶液54.8(g/g)、人工尿液63.0(g/g)。接枝反应及材料吸水结构经FTIR.SEM,PM表征。  相似文献   

15.
A novel poly(acrylic acid)/attapulgite superabsorbent composite was synthesized by graft copolymerization reaction of acrylic acid (AA) on attapulgite micropowder using N,N′‐methylenebisacrylamide (MBA) as a crosslinker and ammonium persulfate (APS) as an initiator in aqueous solution. The effects on water absorbency of such factors as reaction temperature, initial monomer concentration, degree of neutralization of AA, amount of crosslinker, initiator, and attapulgite were investigated. These crosslinked superabsorbent composites were characterized by thermogravimetetric analysis and scanning electron microscopy. The graft copolymerization reaction of AA on attapulgite micropowder was characterized by FTIR. The water absorbencies for these superabsorbent composites in water and saline solutions were investigated and water‐retention tests were carried out. Results obtained from this study show that the water absorbency of the superabsorbent composite synthesized under optimal synthesis conditions with an attapulgite content of 10% exhibited an absorption of 1017 g H2O/g sample and 77 g H2O/g sample in distilled water and in 0.9 wt % NaCl solution, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1596–1603, 2004  相似文献   

16.
Starch and montmorrilonite (MMT) were used as raw materials for synthesizing starch‐graft‐poly[acrylamide (AM)–acrylic acid (AA)]/MMT superabsorbent nanocomposite by graft and intercalation copolymerization reaction of starch, AM, and AA in the presence of organic MMT micropowder in aqueous solution. Major factors affecting water absorbency such as weight ratio of monomers to starch, weight ratio of AM to AA, neutralization degree of AA, amount of crosslinker, initiator, and MMT were investigated. The superabsorbent nanocomposite synthesized under optimal synthesis conditions exhibits absorption of 1120 g H2O/g sample and 128 g H2O/g sample in deionized water and in 0.9 wt % NaCl solution, respectively. IR spectra showed that the graft copolymerization between  OH groups on MMT and monomers took place during the reaction, and that crystal interlayer was pulled open in the superabsorbent nanocomposite. X‐ray diffraction analysis showed that the crystal interlayer of MMT was pulled open to 2.73 nm, and thus formed nanometer exfoliation composite material. Thermogravimetric analysis showed that starch‐graft‐poly (AM–AA) superabsorbent nanocomposite (8 wt % MMT) has good thermal stability. This superabsorbent nanocomposite with excellent water absorbency and water retention, being biodegradable in nature, economical and environment friendly, could be especially useful in industry, agricultural, and horticultural applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Nanocomposite superabsorbents were synthesized by graft copolymerization of mixture of acrylamide (AAm) and acrylic acid (AA) onto collagen using potassium persulfate (KPS) as a free radical initiator and methylenebisacrylamide (MBA) as a crosslinker. Nanoclay sodium montmorillonite (MMt) was introduced as filler into superabsorbent. The chemical structure of the Collagen-g-poly(Sodium Acrylate-co-Acrylamide)/MMt nanocomposite was characterized by means of FTIR spectroscopy, XRD patterns, and TGA thermal methods. Morphology of the sample was examined by scanning electron microscopy (SEM). The effects of reaction variables were systematically optimized to achieve a superabsorbent with swelling capacity as high as possible. Under the optimized conditions concluded, the maximum swelling capacity in distilled water was 950 g/g. Dewatering of nanocomposite and clay-free superabsorbent revealed that inclusion of nanoclay into superabsorbents can improve water retention of superabsorbent under heating. The swelling ratio in various salt solution and kinetic of dewatering was also determined and additionally, the swelling of nanocomposite superabsorbent was measured in solution with pH ranged 1–13. The synthesized nanocomposite exhibited a pH-responsive characteristic.  相似文献   

18.
GG-g-PAA/SH高吸水性树脂的制备与缓释性能研究   总被引:2,自引:2,他引:0  
以天然瓜尔胶(GG)、丙烯酸(AA)和腐植酸钠(SH)为原料,过硫酸铵为引发剂,N,N’-亚甲基双丙烯酰胺为交联剂,采用水溶液聚合法制备了环境友好的多功能瓜尔胶接枝聚丙烯酸/腐植酸钠(GG-g—PAA/SH)高吸水性树脂。考察了腐植酸钠含量对树脂吸水性能的影响,评价了树脂在沙土中的实际保水性能、反复溶胀性能和腐植酸钠肥料缓释性能。结果表明,在体系中引入廉价的腐植酸钠,不但降低生产成本,还能提高树脂的吸水能力,当腐植酸钠含量为15wt%时,高吸水性树脂吸蒸馏水和生理盐水的倍率分别为532g/g和62g/g。在沙土中加入高吸水性树脂能显著提高其保水性能,30d后仍能保持13%的水分。此外,GG-g-PAA/SH高吸水性树脂还具有较优的反复溶胀性能和腐植酸钠肥料缓释功能,可用作兼具吸水、保水和缓释性能的新型节水材料。  相似文献   

19.
Superabsorbents used in agricultural and ecological projects with low‐cost, slow‐release fertilizers and environmentally friendly characteristics have been extensively studied. The use of a natural polymer as the matrix and then further polymerization with some functional material has become the preferred method. In this work, with natural guar gum (GG), partially neutralized acrylic acid, and sodium humate (SH) as the raw materials, ammonium persulfate as the initiator, and N,N′‐methylenebisacrylamide (MBA) as the crosslinker, GG‐g‐poly(sodium acrylate) (PNaA)/SH superabsorbents were synthesized through a solution polymerization reaction and were characterized with Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis. The effects of the SH content and MBA concentration on the water absorbency were investigated. The results showed that the introduction of SH into the GG‐g‐PNaA system could improve the water absorbency, swelling rate, pH‐resistant property, and reswelling capability, and the superabsorbent containing 15 wt % SH had the highest water absorbency of 532 g/g of sample in distilled water and 62 g/g of sample in a 0.9 wt % NaCl solution. The slow release in water and water retention in sandy soil tests revealed that the superabsorbent could act as a fertilizer as well as an effective water‐saving material for agricultural applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
马国富 《精细化工》2013,30(12):1344-1348,1365
以瓜尔胶(GG)、丙烯酸(AA)和黄土(LOESS)为原料,过硫酸铵(APS)为引发剂,N,N'-亚甲基双丙烯酰胺(MBA)为交联剂,采用水溶液聚合法制备了瓜尔胶接枝聚丙烯酸/黄土(GG-g-PAA/LOESS)复合高吸水性树脂。采用FTIR和SEM对其结构进行了表征,研究了LOESS的添加量对复合高吸水性树脂的溶胀能力和溶胀动力学的影响,考察了复合高吸水性树脂的保水性能、反复溶胀性以及在不同pH溶液中的吸水性能。结果表明,瓜尔胶、丙烯酸和LOESS发生了接枝共聚,体系中引入LOESS能够显著提高复合高吸水性树脂的吸水性能。当LOESS的质量分数为2%时,该树脂最高吸水倍率可达602 g/g,室温下6 d后,其保水率仍达28%,5次反复溶胀,吸水倍率仍能保持初始时的49%。此外,该复合高吸水性树脂还表现出优异的pH稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号