首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Poly(vinyl alcohol) (PVA)/iodine polarizing film was manufactured as follows: PVA iodinated in solution before casting (IBC film) and iodinated again after casting (IBC + IAC film) and then the IBC + IAC film was drawn in boric acid aqueous solution (IBC + IAC polarizing film), to improve the durability of the polarizing film under a humid and warm atmosphere. These effects were examined by investigating the structural and optical properties of the IBC, IBC + IAC, and IBC + IAC polarizing films. In the IBC state, the PVA chain segments that combined boric acid and iodine were regarded as defects of the crystal, the formation of I3 decreased with respect to weight gain of boric acid. In the IBC + IAC state, the strength of the peak corresponding to I3 decreased and the I5 peak increased. The iodine ions penetrated into crystal of the IBC state during the IAC process and formed a new PVA/iodine complex crystal at the 2θ = 20° in the X‐ray diffraction curves. In the IBC + IAC polarizing film state, another type of polarizing film (IBC + IAC polarizing film‐H) containing I3 ions mainly was manufactured as well as the IBC + IAC polarizing film to compare the effects of the I3 and I5 ions on the durability of the polarizing films. The durability of the I3 ions that were complexed with the PVA chain was higher than the I5 ions, which could possibly be separated to I3 and I2. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
This research focused on the manufacture a polarizing film with PVA iodinated at solution before casting (IBC) film, which was prepared by casting aqueous solutions of 10 wt % poly(vinyl alcohol) (PVA) containing boric acid with 0, 0.1, 0.5, and 1.0 mol/L of I2/KI aqueous solution, and I2/KI(1:2) with 0, 5, and 10 wt % of PVA. The lights of wavelengths between 450 and 700 nm were polarized in UV analysis. The degree of polarization and transmittance of the IBC polarizing film (10 wt % I2/KI and 0.5 mol/L boric acid) are 99.9% and 43.2%, respectively. The resistance of the heat and humidity of IBC polarizing films was higher than that of commercial polarizing films, which were elucidated by changing the transmittance of the films. This can be explained by the fact that the interaction between polyiodine molecules and PVA chains as the state of IBC is higher than that of the commercial state. The effect of boric acid may be strengthened for the resistance of heat and humidity. Crosslinking by boric acid improved thermal properties of the IBC polarizing films, resulting from the increases of degradation temperature in DSC and TG analysis. And the unit cell broadening occurred, which was caused by the intrusion of boric acid into PVA chains in X-ray analysis. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
This study examined the role of boric acid and the effect of heat treatment on PVA‐iodine polarizing films prepared in the solution state before casting (IBC) of PVA/iodine/boric acid films. The films were prepared by casting aqueous solutions of 10 wt % poly(vinyl alcohol) (PVA) containing boric acid with 0, 0.1, 0.3, and 0.5 mol/l of I2/KI aqueous solution, and I2/KI(1 : 2) with 5 wt % of PVA. The effect of boric acid and heat treatment on the durability of the IBC PVA polarizing sheet films was investigated by UV–vis absorption spectroscopy. Boric acid was found to be essential for the complex formation in PVA/iodine solutions at relatively low I2/KI concentrations and high temperatures. The strength of the complex peak at ∼ 600 nm in UV–vis absorption spectra increased with increasing boric acid concentration. With increasing heating temperature over 90°C the intensity of the peak at 600 nm corresponding to the complex decreased due to the evaporation of I2 decomposed from I5, but the peak at 355 nm corresponding to free I2·I3 was remained unchanged. From heat treatment at 150°C, the intensity of the peak at 600 nm decreased but the intensity of the complex peak (600 nm) of the sample with 0.5 mol/l boric acid was unaffected. The transmittance and degree of polarization for the films increased and decreased with increasing heat treatment time under heat and a humid atmosphere, respectively. However, this tendency decreased with increasing boric acid concentration and heat treatment. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
To get more information on the structure of iodinated poly(vinyl alcohol) (PVA), thermal analyses of unoriented and oriented PVA films were conducted. Unoriented and oriented PVA films iodinated with aqueous solutions at selected concentrations were carried out by thermogravimetry (TG) and differential scanning calorimetry (DSC). The TG curves for the iodinated film shows four or five weight‐loss zones associated with degradation and evaporation of excess I2 molecules and I2 molecules from I, partial OH side groups on PVA, and I2 from I, the remaining OH groups and the partial main chains, the remaining main chains, and a very small amount of residue from PVA. The char of KI salts remained. By investigating the TG results, it was identified that the amount of I ions increased with increasing I2/KI up to 65%, but above that weight gain, the rate of increase diminished and the amount of I ions from the I ions increased. The TG curve for the oriented film was very similar to that for the unoriented film except for its greater weight loss at zone I due to narrow space in amorphous region. The DSC thermogram of iodinated films indicated two peaks at 145°C and 160–170°C, corresponding to the melting of crystals and the degradations of OH groups and main chains, respectively. The maximum temperatures of peaks were much lower than that of the untreated one. ©2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2407‐2415, 2004  相似文献   

5.
The drawability of iodinated at solution before casting (IBC) polyvinyl alcohol films prepared by casting aqueous solutions of 10 wt % PVA containing 15.2, 39.8, 83.2, 117.0, and 140.1% was examined with a tensile tester at 20–60°C. The tensile behavior of IBC films showed that the yield and breaking loads were much lower, and the breaking elongation was even higher than those of the unoriented iodinated after casting (IAC) films as well as the untreated PVA films. The maximum draw ratios of the films with the weight gain of 15.2, 39.8, 83.2, 117, and 140.1% were 4.5, 5.5, 8.5, 8.0, and 7.5, respectively, which were achieved at 20°C in all. The crystallinity of all films increased by the maximum draw, regardless of crystallinity before drawing. The crystalline structure was recovered to the original PVA crystalline lattice by deiodination. Amorphous orientation and initial moduli increased with the maximum draw ratio, while the orientation of crystals was constant. The orientation and moduli increased up to the weight gain of 83.2%, whose highest draw ratio and initial modulus were 8.5 and of 7.1 GPa, respectively, and then decreased. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

6.
The drawability of poly(vinyl alcohol) (PVA) films iodinated with 0.1, 0.3, 0.5, 1.0, and 2.0 mol/L I2/KI aqueous solutions was examined with a tensile tester and a hand‐operated drawer at 30–150°C. The structure of the films drawn to a maximum draw ratio (MDR) and deiodinated was determined by X‐ray diffractometry, differential scanning calorimetry, and birefringence. Generally, the improvement of the drawability for the PVA film via iodination was ascertained by the increased breaking strain and decreased yield stress on the stress–strain curves when increasing the I2/KI concentration of the aqueous solutions used in the iodination. The MDR was generally increased with the concentration of I2/KI and the draw temperature. However, it diminished instead when close to the highest temperature and concentration of I2/KI, which was likely due to molecular degradation by the action of iodine as an oxidizer. The variation of the structure of the films drawn and deiodinated seems to be dependent mainly upon the MDR rather than the concentration of I2/KI. The greater the MDR was, the higher the degree of crystallinity, birefringence, and initial modulus were but the lower the melting temperature. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95:1209–1214, 2005  相似文献   

7.
A film iodinated at solution state before casting (BIBC film) and a film iodinated after casting (BIAC film) were prepared by casting an aqueous solution of poly(vinyl alcohol) (PVA) including I2/KI and boric acid, and by successively soaking the PVA film in aqueous solutions of boric acid and I2/KI, respectively. The boric acid-induced and I2/KI-induced weight gains relative to the PVA were 3, 5, 7, and 10%, and 3, 5, 10, and 20%, respectively. The effects of boric acid and iodine on the crystallinity and drawability of the films were investigated. Although the crystalline structure of the BIAC films was not affected by boric acid, the boric acids in the PVA solution containing I2/KI may have formed intra-molecular cross-links on the PVA chain to accelerate the formation of the PVA–iodine complex evenly, and subsequently interrupt the PVA crystallization through the BIBC film formation to render the resultant film slightly crystalline or practically amorphous. This occurred even at a much lower I2/KI-induced weight gain (20%) than the minimum weight gain (125%) at which the iodinated at solution state before casting film without boric acid indicated a practically amorphous state. The maximum draw ratio of the films generally decreased with increasing boric acid content, which was mainly attributed to the increase of the extended segments of the PVA chains in the amorphous region due to the cross-links formed with the boric acids. The maximum draw ratios of the BIBC films tended to decrease more severely than those of the BIAC films.  相似文献   

8.
The color change of an iodinated poly(vinyl alcohol) (PVA) film caused by physical deformation was investigated in this study. The color of a PVA film soaked in an aqueous potassium iodide (KI)/I2 solution was light yellow, but it turned light blue when the film was physically deformed. The ultraviolet–visible absorption spectrum of the iodinated PVA film extended uniaxially in air was measured at various extension levels. Without deformation, the film showed UV absorption bands at 210, 290, and 360 nm. However, under deformation, the film showed new visible light absorption bands at 440 and 620 nm. From the UV–vis absorption spectra of several iodinated solutions, we found that the absorption wavelength of iodine was affected by the cohesive energy of the solvents. The KI/I2 diethyl ether solution showed an absorption band at 460 nm, and this provided a clue to understanding the color change of the PVA–iodine complexes caused by physical deformation. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43036.  相似文献   

9.
Two kinds of amorphous nylon 6 films iodinated before forming from the powders iodinated with 0.2N and 1.0N I2/KI aqueous solutions were prepared by a melt‐press, and isothermally treated at 20 to 80°C for 1 day to 20 days. Thermal analyses were performed to investigate mainly the crystallization behavior on the treatment. The DSC thermograms for the treated films exhibit three temperature‐groups of endothermic peaks at 60 ~ 70°C, 105 ~ 120°C, and higher than 150°C, which may be associated with the melting of the complex crystal, the relaxed γ‐crystal, and the relaxed α‐crystal, respectively. The film containing less I2/KI and treated at the higher temperature exhibits the peaks associated with the more stable type of crystal. The peak temperature generally increases with the treating temperature and time. On the occasion of there being two peaks associated with the γ‐crystal and the α‐crystals, ΔH for the α‐crystal increases while that for the γ‐crystal decreases with increasing the treating time. The TG curves indicate two temperature‐zones of weight loss by the volatilization of I2 from I5? and the decompositions of I3? and nylon 6. With increasing treating temperature, the % weight loss by the volatilization of I2 decreases, and consequently the temperature of the weight loss by the decomposition of nylon 6 increases. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1062–1069, 2004  相似文献   

10.
Four types of polyvinyl alcohol (PVA)/iodine complex films were made using different boric acid treatments to prepare polarizing films having high durability under humid and warm atmospheres and to identify the effects of the boric acid treatment method on the formation of the PVA/iodine polarizing film. The four types of films were a PVA iodinated film(I), a PVA film that was iodinated and then treated with boric acid(I‐B), a PVA film that was treated with boric acid and then iodinated(B‐I), and a PVA film that was simultaneously treated with iodine and boric acid(I+B). The concentrations of I2/KI were 0.03, 0.05, and 0.07 mol/L, and the concentrations of boric acid were 0.1, 0.3, and 0.5 mol/L. Comparing four type films treated with 0.05 mol/L I2/KI and 0.5 mol/L boric acid, the conformation of PVA/iodine complexes for I‐B film were larger than the others. The degrees of polarization (ρ) of all of the films increased to very high levels (99.9%↑). The durability of I‐B was superior to B‐I or I+B, and the change in the ρ was below 5% because the boric acid treated after iodine treatment reduced the molecular mobility of the PVA/iodine complex chains through intracrosslinking, so that the PVA/iodine complex could not easily collapse. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
The polarization properties of iodine complex layer deposited by oxidation of poly(vinyl alcohol) (PVA) containing metal iodide were investigated. Heat-resistant polarizing films with high polarization efficiency were produced by oxidizing and stretching the PVA containing metal iodide. The results indicate that i) the polarization efficiency of a polarizing film prepared by oxidation of a PVA film containing 1 mmol or more of potassium iodide (KI)/g PVA at 0°C for 120 s in a 10 wt.-% aqueous solution of H2O2 and a degree of stretching of 400% is high, ii) the heat resistance of the polarizing film in this experiment is higher than that of a filter prepared from a commercial PVA film.  相似文献   

12.
We have investigated the microstructure of the poly(vinyl alcohol) (PVA) films using small- and wide-angle X-ray scattering (SAXS and WAXS, respectively) techniques. The samples were uniaxially drawn in water or KI/I2 aqueous solution and then dried in an air-oven at 333 K for 1 h prior to SAXS and WAXS measurements. It was found that for the films drawn in KI/I2 solution PVA chains in the microfibrillar structure are more extended upon the film drawing compared to the case of the films drawn in pure water, which is resulted from the correlation function analysis on the SAXS data. Adsorbed iodines into the film were anticipated to act as junction points between the microfibrils via the formation of the PVA-iodine complexes.  相似文献   

13.
Summary The conductivities of polymers like poly (vinyl alcohol) (PVA) and its iodine complex membranes are reported here. PVA-iodine complex membrane was prepared by dipping PVA film into an I2–KI solution. The formation of the complex membrane was confirmed by IR spectra. Conductivities were determined from 30 to 300 °C with a frequency ranges from 42 Hz to 500 KHz in solid state. It was observed that iodine is known to act as a catalyst for dehydration of PVA. A possible mechanism for the dehydration of PVA catalyzed by iodine is also explained.  相似文献   

14.
In this study, maleinized (SOMAP) and isocyanated soybean oil (SONCO) triglycerides have been successfully grafted onto one surface of poly(vinyl alcohol)(PVA) films to give films that are hydrophilic on one side and hydrophobic on the other. The surface grafting was accomplished by the reaction of succinic anhydride or isocyanate functionalities of soybean oil derivatives and the hydroxyl groups of PVA films. The reaction was run in toluene, using PVA films on glass slides so that only one side of the film was accessible. After grafting, the films were rinsed with hot toluene to remove ungrafted triglycerides from the surface. The reaction on the surface was confirmed by ATR‐FTIR and 1H‐NMR spectroscopic techniques. A series of films were prepared at different concentrations of SOMAP or SONCO in toluene. The increase in hydrophobicity with an increase in SOMAP or SONCO concentrations was observed by water contact angle measurements. The contact angles on the grafted side of the film reach their maximum value of 88° and 94° for 26 and 2.5% SOMAP and SONCO concentrations in toluene, respectively, while the ungrafted side gives contact angle of 48°. Surface morphologies of PVA‐g‐SOMAP and PVA‐g‐SONCO films were investigated by atomic force microscopy, whereas optical microscopy and staining was used to determine the homogeneity of the films. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Monodisperse poly(vinyl acetate) (PVAc) microspheres with high molecular weight obtained by suspension polymerization of vinyl acetate were saponified in alkaline aqueous solution to keep their spherical structure. The saponification was restricted on the surface of the PVAc microspheres and obtained particles had skin/core structure. Various poly(vinyl alcohol) (PVA) microspheres with different diameters and degrees of saponification (DSs) were obtained. The conversion of PVAc to PVA during the heterogeneous surface saponification time were examined by nuclear magnetic resonance spectroscopy and after 72 h hydrogel type PVA microspheres completely saponified were obtained. The crystal melting temperatures of the microspheres obtained by the saponification were measured a constant value of 238°C irrespective of varying DS, and the peaks became enlarged as reaction time. Iodine complexes were formed in saponified microspheres with DS of 41% and 99% by immersing them in I2/KI aqueous solution and decomposed by the reduction of I2 in the complexes to 2I? using sodium sulfite to confirm whether the skin formed through the saponification was composed of PVA with high VA content. Obviously, characteristic blue color developments owing to I5?‐PVA complexes were observed in both saponified regions and a red in the PVAc core. Consequently, it was concluded that the PVA skins formed by heterogeneous surface saponification had high DSs. Such complexes endowed polymeric microspheres a good radiopacity which would be useful in clinical treatment of vascular diseases and were examined by X‐ray irradiation image. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
Poly(vinyl alcohol) as pure or composite materials is widely used in the food and textile industries, andbiomedical applications due to some important properties such as uniaxial tensile, biocompatibility, and noncarcinogenicity. Investigation of the influence of the film thickness and heating on the uniaxial tensile, spectroscopic, and surface properties of PVA films investigated in this study is quite important for improving the properties of such materials and their applicability in different conditions. In this study, with the influence of heating, a necking behavior was observed at around 2% for thin films and 4–9% strain for thicker PVA films for which a kind of transition point at around 1–2% strain was observed. The mechanical strength of PVA films, strain at break, and Young's modulus were enhanced greatly as the temperature increased from 80 to around 110 °C, and then most of them decreased. The degree of crystallinity increased linearly with the heat temperature from around 36–40%. Although PVA thin films obtained a very smooth surface structure after being heated at 80 °C, with increasing heat temperature, the surface roughness of both thin and thick PVA films increased and the PVA thin films obtained more degraded film surface. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44915.  相似文献   

17.
The color development due to the complex formation of poly(vinyl alcohol) (PVA) with iodine increased with increasing syndiotacticity of PVA. Isotactic PVA showed no color development. The color development of syndiotacticity-rich PVA film decreased with increasing annealing temperature for films before complexization, whereas that of atactic (commercial) PVA increased with it. Lower temperatures, the elongation of complex film, and the presence of boric acid enhanced the absorbance at 600 nm due to I?5. The complexes are assumed to be made by incorporation of polyiodines into aggregates of syndiotactic sequences in PVA. The polarizability and electric conductivity of complex films are investigated. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
The effect of syndiotactivity of poly(vinyl alcohol) (PVA) both on the formation and thermal stability of the complex formed in the amorphous phase of PVA films is investigated, and then a model of the complex is presented. The amount of the complex formed in syndiotacticity-rich PVA is much larger than that formed in atactic PVA under a given iodine-soaking condition, and the former complex has a higher thermal stability in the soaking solution than the latter. The complex formed in the amorphous phase is proposed to have such a structure as that in which a linear polyiodine I5? or I5? with a 3.1 A? periodicity is enveloped by four PVA segments of syndiotactic configuration with extended conformation. In this model, these four PVA chains participating in a complex are supposed to be fixed by interchain hydrogen bonds. The observed X-ray meridional intensity curve of iodinated PVA film can be explained by a series of two I5?. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
Poly(L ‐lactic acid) (PLLA) films with different crystallinities were prepared by solvent casting and subsequently annealed at various temperatures (Ta) (80–110°C). The effects of crystallinity on enzymatic degradation of PLLA films were examined in the presence of proteinase K at 37°C by means of weight loss, DSC, FTIR spectroscopy, and optical microscopy. DSC and the absorbance ratio of 921 and 956 cm?1 (A921/A956) were used to evaluate crystallinity changes during thermally induced crystallization and enzymatic hydrolysis. The highest percentage of weight loss was observed for the film with the lowest initial crystallinity and the lowest percentage of weight loss was observed for the film with highest crystallinity. FTIR investigation of degraded films showed a band at 922 cm?1 and no band at 908 cm?1 suggested that all degraded samples form α crystals. The rate of degradation was found to depend on the initial crystallinity of PLLA film and shown that enzymatic degradation kinetics followed first‐order kinetics for a given enzyme concentration. DSC crystallinity and IR absorbance ratio, A921/A956 ratio, showed no significant changes with degradation time for annealed PLLA films whereas as‐cast PLLA film showed an increase in crystallinity with degradation; this revealed that degradation takes place predominantly in the free amorphous region of annealed PLLA films without changing long range and short range order © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
The electrochemical preparation of polypyrrole (PPY)–poly(vinyl alcohol) (PVA) conducting polymer composite films on an indium–tin oxide glass electrode from an aqueous solution containing a pyrrole monomer, a p‐toluene sulfonate electrolyte, and a PVA insulating polymer is reported. The prepared PPY–PVA composite films were characterized by Fourier Transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and conductivity measurements. The FTIR study showed that the composite of PPY and PVA formed through bond formation between PVA and the p‐toluene sulfonate dopant anion. The conductivity data of PPY–PVA showed that with increasing PVA concentration in the pyrrole solution, the conductivity of the prepared PPY–PVA film increased up to a certain level due to an increase in conjugation length, and later, it decreased with further increases in the PVA concentration in the solution due to a decrease in conjugation length. This was supported by the FTIR band intensity I1560/I1480. The TGA results show that the PPY–PVA polymer composite film was thermally more stable than the PPY film. A shielding effectiveness of 45.6 dB was exhibited by the PPY–PVA composite film in the microwave frequency range. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4107–4113, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号