首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dual‐layer hollow fiber membranes were produced from blends of Ultem and polymer of intrinsic microporosity (PIM‐1) with enhanced gas permeance. The effects of spinning parameters (take‐up speed and air gap distance) on gas separation performance were investigated based on the pristine Ultem. Selected spinning conditions were further adopted for the blend system, achieving defect‐free and almost defect‐free hollow fibers. Adding PIM results in a higher fractional free volume, 50% increments in gas permeance were observed for Ultem/PIM‐1 (95/5) and more than 100% increments for Ultem/PIM‐1 (85/15). Both O2/N2 and CO2/CH4 selectivities remained the same for Ultem/PIM‐1 (95/5) and above 80% of their respective intrinsic values for Ultem/PIM‐1 (85/15). The selective layer thickness ranges from 70 to 120 nm, indicating the successful formation of ultrathin dense layers. Moreover, minimum amounts of the expensive material were consumed, that is, 0.88, 1.7, and 2.3 wt % PIM‐1 for Ultem/PIM‐1 (95/5), (90/10), and (85/15), respectively. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3848–3858, 2014  相似文献   

2.
Abstract

The influence of nitric acid extraction on the aggregation state of 0.10 M N,N,N′,N′‐tetra‐n‐octyl‐3‐oxapentane‐1,5‐diamide (TODGA) in n‐octane or n‐heptane was studied by small‐angle neutron scattering (SANS) and vapor pressure osmometry (VPO). When the equilibrium concentration of nitric acid in the aqueous phase is less than 0.7 M, TODGA exists as a mixture of monomers and dimers. As the aqueous phase acidity is increased, the extractant molecules form higher aggregates containing up to an average of seven molecules of TODGA. The formation of the larger TODGA aggregates takes place over the same range of aqueous acidities where the extraction of trivalent f‐element cations displays a hyperstoichiometric sixth power nitric acid dependence. This suggests that acid‐driven aggregation of TODGA is responsible for the unusual acid and extractant dependencies observed for the extraction of trivalent metal nitrates with this ligand.  相似文献   

3.
Porous polyvinylidene fluoride (PVDF) hollow‐fiber membranes with high porosity were fabricated using the immersion precipitation method. Dimethylacetamide (DMAc) and N‐methyl‐2‐pyrrolidone (NMP) were used as solvent, respectively. In addition, polyvinylpyrrolidone (PVP), lithium chloride, and organic acids were employed as nonsolvent additives. The effects of the internal and external coagulation mediums on the resulting membrane properties were also investigated. The resulting hollow‐fiber membranes were characterized in terms of maximum pore radius, mean pore radius, effective surface porosity as well as wetting pressure. The structures of the prepared hollow fibers were examined using a scanning electron microscope. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1643–1653, 2001  相似文献   

4.
Emission of sulfur dioxide (SO2) from coal power plants has to be controlled and minimized to reduce environmental risk. This study aimed to investigate the hollow fiber composite membrane was used for the removal of SO2 from a SO2/CO2/N2 mixed gas. Moreover, for the improvement of SO2 removal efficiency, the polyetherimide (PEI) membrane was coated with poly(vinyl chloride)‐graft‐poly(oxyethylene methacrylate) (PVC‐g‐POEM). The PVC‐g‐POEM/PEI composite hollow fiber membrane was extensively characterized by various techniques including scanning electron microscopy, Fourier transform infrared spectroscopy, and atomic force microscopy. Experiments with permeation of SO2, CO2, N2, and a ternary gas mixture were carried out to observe membrane behavior in response to different operating conditions. As a result, permeance of SO2 was 105–2705 GPU and selectivity of SO2/CO2 was 3.9–175.6. From the mixed gas separation experiment, the maximum SO2 removal efficiency reached up to 84.5%. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2298–2306, 2014  相似文献   

5.
The objectives of this work are, fundamentally, to understand hollow fiber membrane formation from an engineering aspect, to develop the governing equations to describe the velocity profile of nascent hollow fiber during formation in the air gap region, and to predict fiber dimension as a function of air‐gap distance. We have derived the basic equations to relate the velocity profile of a nascent hollow fiber in the air‐gap region as a function of gravity, mass transfer, surface tension, drag forces, spinning stress, and rheological parameters of spinning solutions. Two simplified equations were also derived to predict the inner and outer diameters of hollow fibers. To prove our hypotheses, hollow fiber membranes were spun from 20 : 80 polybezimidazole/polyetherimide dopes with 25.6 wt % solid in N,N‐dimethylacetamide using water as the external and internal coagulants. We found that inner and outer diameters of as‐spun fibers are in agreement with our prediction. The effects of air‐gap distance or spin‐line stress on nascent fiber morphology, gas performance, and mechanical and thermal properties can be qualitatively explained by our mathematical equations. In short, the spin‐line stresses have positive or negative effects on membrane formation and separation performance. A high elongational stress may pull molecular chains or phase‐separated domains apart in the early stage of phase separation and create porosity, whereas a medium stress may induce molecular orientation and reduce membrane porosity or free volume. Scanning electron microscopic photographs, coefficient of thermal expansion, and gas selectivity data confirm these conclusions. Tg of dry‐jet wet‐spun fibers is lower than that of wet‐spun fibers, and Tg decreases with an increase in air‐gap distance possibly because of the reduction in free volume induced by gravity and elongational stress. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 379–395, 1999  相似文献   

6.
The aim of this work was to prepare blend membranes of a polyetherimide (PEI) and different ratios of a microporous polyimide (PIM‐B) in order to obtain an improved material for gas selectivity. Miscibility of the membranes was studied through fourier transform infrared spectroscopy (FTIR), Fluorescence, ultraviolet‐visible spectroscopy (UV–vis), polarize light microscope images, X‐ray diffraction (XRD), and differential scanning calorimetry analysis. Gas permeability assays were also performed. Results showed blends were partially miscible along the different ratios due to the existence of: (i) absorption shoulders at lower wavenumbers on the carbonyl stretching band; (ii) red‐shifting of Fluorescence and UV–vis absorption bands; (iii) decreasing of d‐spacing as the amount of PIM‐B phase increased; and (iv) composition‐dependent glass transition temperatures (Tgs). The mobility selectivity (Di/j) dominated H2 and O2 gas separations. High solubility coefficients (S) linked to PIM‐B microporosity improved the ideal gas selectivity of the blend membranes. PEI/PIM‐B membrane at the ratio of 80/20 showed impressive H2/CO2 (8.66) and O2/N2 (10.90) gas separation factors. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44682.  相似文献   

7.
《分离科学与技术》2012,47(10):1541-1554
Hollow fiber contactor was used to study non-dispersive extraction (NDSX) of Nd3+ ions from aqueous solutions. N,N,N′,N′-tetraoctyl diglycolamide (TODGA) diluted with n-dodecane was used as the organic phase with di-n-hexyl octanamide (DHOA) as the phase modifier. The role of cations (H+/Na+) on the transport of Nd3+ ions has been investigated for this system. It was observed that H+ ion has a significant role to play in the Nd3+/TODGA complexation reaction. A mathematical model has also been developed to simulate the NDSX process in a hollow fiber contactor. A comparison has also been made between extraction profiles from the NDSX process and the hollow fiber supported liquid membrane (HFSLM) process. It was observed that NDSX gave comparatively faster rates of extraction in the presence of H+ ions but slower in the absence of H+ ions.  相似文献   

8.
Composite layer containing postmodified MIL‐53 (P‐MIL‐53) was exploited to be coated on as‐fabricated asymmetric hollow fiber membrane for improving gas separation performance. The morphology and pore size distribution of P‐MIL‐53 particles were characterized by SEM and N2 adsorption isotherm. The EDX mapping and FTIR spectra were performed to confirm the presence of P‐MIL‐53 deposited on the outer surface of hollow fiber membranes. The results of pure gas permeation measurement indicated that incorporation of P‐MIL‐53 particles in coating layer could improve permeation properties of hollow fiber membranes. By varying coating times and P‐MIL‐53 content, the membrane coated with PDMS/15%P‐MIL‐53 composite by three times achieved best performance. Compared to pure PDMS coated membrane, CO2 permeance was enhanced from 29.96 GPU to 40.24 GPU and ideal selectivity of CO2/N2 and CO2/CH4 also increased from 23.28 and 26.95 to 28.08 and 32.03, respectively. The gas transport through composite membrane was governed by solution‐diffusion mechanism and CO2 preferential adsorption of P‐MIL‐53 contributed to considerable increase of CO2 solubility resulting in accelerated permeation rate. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44999.  相似文献   

9.
Outer‐selective thin‐film composite (TFC) hollow fiber membranes offer advantages like less fiber blockage in the feed stream and high packing density for industrial applications. However, outer‐selective TFC hollow fiber membranes are rarely commercially available due to the lack of effective ways to remove residual reactants from fiber's outer surface during interfacial polymerization and form a defect‐free polyamide film. A new simplified method to fabricate outer‐selective TFC membranes on tribore hollow fiber substrates is reported. Mechanically robust tribore hollow fiber substrates containing three circular‐sector channels were first prepared by spinning a P84/ethylene glycol mixed dope solution with delayed demixing at the fiber lumen. The thin wall tribore hollow fibers have a large pure water permeability up to 300 L m?2 h?1 bar?1. Outer‐selective TFC tribore hollow fiber membranes were then fabricated by interfacial polymerization with the aid of vacuum sucking to ensure the TFC layer well‐attached to the substrate. Under forward osmosis studies, the TFC tribore hollow fiber membrane exhibits a good water flux and a small flux difference between active‐to‐draw (i.e., the active layer facing the draw solution) and active‐to‐feed (i.e., the active layer facing the feed solution) modes due to the small internal concentration polarization. A hyperbranched polyglycerol was further grafted on top of the newly developed TFC tribore hollow fiber membranes for oily wastewater treatment. The membrane displays low fouling propensity and can fully recover its water flux after a simple 20‐min water wash at 0.5 bar from its lumen side, which makes the membrane preferentially suitable for oil‐water separation. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4491–4501, 2015  相似文献   

10.
A Mo‐substituted lanthanum tungstate mixed proton‐electron conductor, La5.5W0.6Mo0.4O11.25?δ (LWM04), was synthesized using solid state reactions. Dense U‐shaped LWM04 hollow‐fiber membranes were successfully prepared using wet‐spinning phase‐inversion and sintering. The stability of LWM04 in a CO2‐containing atmosphere and the permeation of hydrogen through the LWM04 hollow‐fiber membrane were investigated in detail. A high hydrogen permeation flux of 1.36 mL/min cm2 was obtained for the U‐shaped LWM04 hollow‐fiber membranes at 975°C when a mixture of 80% H2?20% He was used as the feed gas and the sweep side was humidified. Moreover, the hydrogen permeation flux did not significantly decrease over 70 h of operation when fed with a mixture containing 25% CO2, 50% H2, and 25% He, indicating that the LWM04 hollow‐fiber membrane has good stability under a CO2‐containing atmosphere. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1997–2007, 2015  相似文献   

11.
This work investigates CO2 removal by single and blended amines in a hollow‐fiber membrane contactor (HFMC) under gas‐filled and partially liquid‐filled membrane pores conditions via a two‐scale, nonisothermal, steady‐state model accounting for CO2 diffusion in gas‐filled pores, CO2 and amines diffusion/reaction within liquid‐filled pores and CO2 and amines diffusion/reaction in liquid boundary layer. Model predictions were compared with CO2 absorption data under various experimental conditions. The model was used to analyze the effects of liquid and gas velocity, CO2 partial pressure, single (primary, secondary, tertiary, and sterically hindered alkanolamines) and mixed amines solution type, membrane wetting, and cocurrent/countercurrent flow orientation on the HFMC performance. An insignificant difference between the absorption in cocurrent and countercurrent flow was observed in this study. The membrane wetting decreases significantly the performance of hollow‐fiber membrane module. The nonisothermal simulations reveal that the hollow‐fiber membrane module operation can be considered as nearly isothermal. © 2014 American Institute of Chemical Engineers AIChE J, 61: 955–971, 2015  相似文献   

12.
Microporous polyethylene (PE) hollow fiber membrane with a porosity of 43% and N2 permeation of 4.96 cm3 (STP)/cm2 s cmHg was prepared by melt‐spinning and cold‐stretching method. It was found that PE with a density higher than 0.96 g/cm3 should be used for the preparation of microporous PE hollow fiber membranes. By increasing the spin–draw ratio, both the porosity and the N2 permeation of the hollow fiber membranes increased. Annealing the nascent hollow fiber at 115°C for 2 h was suitable for attaining membranes with good performance. By straining the hollow fiber to higher extensions, the amount and size of the micropores in the hollow fiber wall increased, and the N2 permeation of the membranes increased accordingly. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 203–210, 2002; DOI 10.1002/app.10305  相似文献   

13.
2,2′‐(Methylimino)bis(N,N‐dioctylacetamide) (MIDOA) was developed as a new extractant for technetium. MIDOA has a similar backbone to TODGA, N,N,N′,N′‐tetraoctyldiglycolamide, where the nitrogen atom bearing a methyl group replaces the ether oxygen in TODGA. MIDOA is highly lipophilic and ready to use in the HNO3n‐dodecane extraction system. The distribution ratio (D) for Tc(VII) is extremely high. In addition, Cr(VI), Re(VII), Mo(VI), W(VI), Pd(II), and Pu(IV) are well extracted by MIDOA. MIDOA has high selectivity toward certain oxometallates. The D(Tc) values decrease gradually with HNO3, H+, and NO3 ? concentrations, and the log D vs log [MIDOA] dependence indicates the species extracted to be the 1:1 metal‐ligand complex. It is clear that MIDDA [2,2′‐(methylimino)bis(N,N‐didodecylacetamide)] and IDDA [2,2′‐(imino)bis(N,N‐didodecylacetamide)], which have structures analogous to MIDOA, have similar extraction behavior to that of MIDOA.  相似文献   

14.
Cellulose triacetate (CTA) hollow fiber membrane used to separate methanol/methyl tert-butyl ether (MTBE) by pervaporation (PV) has been prepared from CTA hollow fiber reverse osmosis (RO) membrane for desalination of brackish water with high salinity. Acetone was selected as a modification agent of CTA membrane. PV performance depended on the solvent concentration, the treatment time and modification temperature of CTA RO hollow fiber membrane soaked in the aqueous acetone. The results show that CTA hollow fiber membrane modified with the solvent has a superior performance both the separation factor and the permeate flux in the PV experiment conditions.  相似文献   

15.
We prepared polyetherimide (PEI) hollow fiber membranes using polyvinylpyrrolidones (PVP) with different molecular weights (PVP 10,000, PVP 40,000, and PVP 1,300,000) as additives for oil/water separation. Asymmetric hollow fiber membranes were fabricated by wet phase inversion technique from 25 wt % or 30 wt % solids of 20 : 5 : 75 or 20 : 10 : 70 (weight ratio) PEI/PVP/N‐metyl‐2‐pyrrolidone (NMP) solutions and a 95 : 5 NMP/water solution was used as bore fluid to eliminate resistance on the internal surface. Effects of PVP molecular weights on morphology, oil‐surfactant‐water separation characteristics, mechanical, and thermal properties of PEI/PVP hollow fiber membranes were investigated. It was found that an increase in PVP molecular weight and percentage in PEI/PVP dope solution resulted in the membrane morphology change from the finger‐like structure to the spongy structure. Without sodium hypochlorite posttreatment, hollow fiber membranes with higher PVP molecular weights had a higher rejection but with a lower water flux. For oil‐surfactant‐water emulsion systems (1600 ppm surfactant of sodium dodecylbenzenesulfonate and 2500 ppm oil of n‐decane), experimental results illustrated that the rejection rates for surfactant, total organic carbon, and oil were 76.1 ≈ 79.8%, 91.0 ≈ 93.0%, and more than 99%, respectively. Based on the glass transition temperature values, PVP existed in hollow fiber membranes and resulted in the hydrophilicity of membranes. In addition, using NaOCl as a posttreatment agent for membranes showed a significant improvement in membrane permeability for PVP with a molecular weight of 1300 K, whereas the elongation at break of the treated hollow fiber membranes decreased significantly. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2220–2233, 1999  相似文献   

16.
In the present study, the temperature sensitive PVDF‐g‐NIPAAm HFM was prepared by grafting N‐isopropylacrylamide (NIPAAm) on poly(vinylidene fluoride) (PVDF) hollow fiber membrane (HFM) using a novel approach, alkaline treatment method. The structures of PVDF‐g‐NIPAAm HFM were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The effects of alkaline treatment time and grafting yield on the mechanical properties of PVDF HFM were measured and analyzed. In addition, the temperature sensitive behavior of PVDF‐g‐NIPAAm HFM and the effect of grafting yield on the temperature sensitive behavior were investigated by the flux of pure water and the rejection of ovalbumin. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 833–837, 2006  相似文献   

17.
This article presents application of polymer inclusion membranes (PIM) containing polymer matrices: cellulose triacetate (CTA) or poly(vinyl) chloride (PVC), o‐nitrophenyloctyl ether (NPOE) as a plasticizer and phosphonium ionic liquids, i.e., trihexyltetradecylphosphonium chloride (Cyphos IL 101), bis(2,4,4‐trimethylpentyl)phosphinate (Cyphos IL 104) and tributyltetradecylphosphonium chloride (Cyphos IL 167), as carriers for Zn(II) transport from chloride medium. Cyphos IL167 application as an ion carrier in PIMs is reported for the first time. The membrane composition is found to affect Zn(II) transport significantly. SEM and AFM images show the differences in the surface morphology of PVC and CTA based membranes. Better transport abilities of CTA membranes (Zn(II) recovery factors exceed 80%) compared with those of PVC, indicate that the structural differences between the two polymers play a crucial role for the membrane permeability. The best initial flux and permeability coefficient are obtained for the membranes with Cyphos IL 101 and Cyphos IL 104 as carriers. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42319.  相似文献   

18.
We report a detailed modeling analysis of membrane reactor systems for propane dehydrogenation (PDH), by integrating a two‐dimensional (2‐D) nonisothermal model of a packed bed membrane reactor (PBMR) with ASPEN process simulations for the overall PDH plant including downstream separations processes. PBMRs based on ceramic hollow fiber membranes—with catalyst placement on the shell side—are found to be a viable route, whereas conventional tubular membranes are prohibitively expensive. The overall impact of the PBMR on the PDH plant (e.g., required dimensions, catalyst amount, overall energy use in reaction and downstream separation) is determined. Large savings in overall energy use and catalyst amounts can be achieved with an appropriate configuration of PBMR stages and optimal sweep/feed ratio. Overall, this work determines a viable design of a membrane reactor‐based PDH plant and shows the potential for miniaturized hollow‐fiber membrane reactors to achieve substantial savings. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4519–4531, 2017  相似文献   

19.
To modify acrylamide (AAm) hydrogels for specialty applications, it was copolymerized with 2‐Hydroxypropyl methacrylate (HPMA) in different molar ratio at 25°C in 1:1 water–acetone solvent system, using ammonium persulphate (APS) and N,N,N,N‐tetramethyl ethylene diamine (TEMED) initiator–accelerator system. Two series of hydrogels were thus prepared using two different crosslinkers—ethylene glycol dimethacrylate (EGDMA) and N,N‐methylene bisacrylamide (N,N‐MBAAm). To affect property profile of the hydrogels, concentration of HPMA was varied over a range of five concentrations from 3.5 to 28 mM. Hydrogels were further functionalized by partial hydrolysis with NaOH and Hofmann amide degradation reaction. FTIR, Nitrogen analysis, and SEM were used to establish monomer reactivity and structure relationship of the hydrogels. Metal ion uptake was studied as a function of various structural aspects of the hydrogels. Water uptake behavior of the hydrogels was studied at constant time, temperature, and pH, both pre and post metal loading. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3040–3049, 2006  相似文献   

20.
Two modified hollow fiber membranes, the chelating hollow fiber membrane with iminodiacetic acid and the cation‐exchange hollow fiber membrane with sulfonic acid group ( SO3H), were prepared by radiation‐induced grafting of glycidyl methacrylate onto polyethylene hollow fiber membrane and its subsequent iminodiacetation and sulfonation. The adsorption characteristics of Co2+ and Cs1+ for the 2 hollow fiber membranes were examined when the solutions of Co2+ and Cs1+ permeate across the 2 membranes, respectively. Without regard to the chelating membrane with iminodiacetic acid group and the cation‐exchange membrane with sulfonic acid group ( SO3H), 2 membranes were observed to adsorb Co2+ higher than Cs1+. The adsorption curves of Co2+ by IDA group‐chelating fiber membrane in the presence of Na1+ and Ca2+ showed that the chelating hollow was found to have a very high selectivity for Co2+, even though there is a high concentration of Na1+ and Ca2+ in the inlet solution. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 999–1006, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号