首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The curing behavior of diglycidyl ether of bisphenol A (DGEBA) was investigated by differential scanning calorimetry with mixtures of silicon‐containing amide–amines and diaminodiphenyl sulfone (DDS). Silicon‐containing amide–amines were prepared by the reaction of 2.5 mol of 4,4′‐diaminodiphenyl ether (E), 4,4′‐diaminodiphenyl methane (M), 3,3′‐diaminodiphenyl sulfone (mS), 4,4′‐diaminodiphenyl sulfone (pS), bis(3‐aminophenyl) methyl phosphine oxide (B), or tris(3‐aminophenyl) phosphine oxide (T) with 1 mol of bis(4‐chlorobenzoyl) dimethyl silane. Mixtures of the amide–amines and DDS at ratios of 0:1, 0.25:0.75, 0.5:0.5, 0.75:0.25, and 1:0 were used to investigate the curing behavior of DGEBA. A single exotherm was observed on curing with a mixture of amide–amine and DDS. This clearly shows that the mixture participated in the cocuring reaction. The peak exotherm temperature depended on the structure and the molar ratio of amide–amines. With all of the amide–amines and DDS, a significant decrease in the kick‐off temperature of the curing exotherm was observed on the incorporation of a 0.25 molar fraction of amide–amines. Thus, with the mixture, the curing temperatures were reduced and were lowest for ether‐containing amide‐amines and highest for methylene‐containing amide–amines. The char yield was almost similar in the samples cured with amide–amines (E, pS, or mS) or DDS. The char yield was higher than for either of the constituents when a mixture was used. A synergistic behavior was observed when a mixture of E, M, mS, or pS and DDS was used, whereas mixture of B or T and DDS showed antigonism in the char yield. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1739–1747, 2003  相似文献   

2.
The curing behavior of diglycidyl ether of bisphenol‐A (DGEBA) with aromatic imide–amines having aryl ether, sulfone, and methylene linkages was studied using differential scanning calorimetry (DSC). Six imide–amines of varying structure were synthesized by reacting 1 mol of naphthalene 1,4,5,8‐tetracarboxylic dianhydride (N) or 4,4′‐oxodiphthalic anhydride (O) with excess (>2 mol) of 4,4′‐diaminodiphenylether [E] or 4,4′‐diaminodiphenyl methane [M] or 4,4′‐diaminodiphenyl sulfone [S]. The imide–amines prepared by reacting O or N with S, M, and E have been designated as OS/NS; OM/NM, and OE/NE, respectively. Structural characterization of imide–amines was done using FTIR, 1H NMR, 13C NMR, and elemental analysis. The curing behavior of DGEBA in the presence of stoichiometric amount of imide–amines was investigated by recording DSC scans. A broad exothermic transition was observed and the peak exotherm temperature was found to be dependent on the structure of imide–amines. The peak exotherm temperature (Tp) was lowest in case of imide–amines OE and highest in case of imide–amines NS/OS. Thermal stability of isothermally cured DGEBA in the presence of imide–amines was evaluated by dynamic thermogravimetry. The char yield was highest for resin cured with imide–amines NE. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
The article describes the synthesis and characterization of silicon‐containing amide amines obtained by the reaction of bis(4‐chlorobenzoyl)dimethylsilane with 4,4′‐diaminodiphenyl ether, 4,4′‐diaminodiphenyl methane, 4,4′‐diaminodiphenyl sulfone/3,3′‐diaminodiphenyl sulfone, bis(3‐aminophenyl)methyl phosphine oxide, and tris(3‐aminophenyl)phosphine oxide with dimethyl acetamide as a solvent. Structural characterization of amide amines was done with Fourier transform infrared and 1H‐NMR spectroscopy. We used these aromatic amide amines as curing agents to investigate the effect of structure and molecular size on the curing and thermal behavior of diglycidyl ether of bisphenol A (DGEBA). The curing behavior of DGEBA in the presence of stoichiometric amounts of silicon‐containing aromatic amide amines was investigated by differential canning calorimetry. A broad exothermic transition in the temperature range of 200–300°C was observed in all the samples. The peak exotherm temperature was lowest in the case of phosphorus‐containing amides and was highest in the case of ether‐containing amides. Thermal stability of the isothermally cured resins was evaluated with dynamic thermogravimetry in a nitrogen atmosphere. A significant improvement in the char yield was observed with silicon‐containing amines, and it was highest in case of samples with both silicon and phosphorus as flame‐retarding elements. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1345–1353, 2003  相似文献   

4.
This article describes the curing behavior of diglycidyl ether of bisphenol‐A using Cysteine (A)/ Methionine (B)/Cystine (C)/ mixture of 4,4′‐diaminodiphenyl sulfone (DDS) and Cysteine/DDS and Methionine/DDS and Cystine in various molar ratios as curing agent. Differential scanning calorimetry was used to study the cure kinetics by recording the DSC scans at heating rates of 5, 10, 15, and 20°C/min. The peak exotherm temperature was found to be dependent on the heating rate, structure of the amino acids and on the DDS/amino acids molar ratio. A broad exotherm was observed in the temperature range of 150–245°C (EA), 155–240°C (EB), and 190–250°C (EC). Curing of DGEBA with mixture of amino acids and 4, 4′‐diaminodiphenyl sulfone (DDS) resulted in a decrease in characteristic curing temperatures. Activation energy of curing reaction is determined in accordance to Ozawa's method and was found to be dependent on the structure of the amino acids and on the ratio of 4,4′‐diaminodiphenyl sulfone (DDS) to amino acid. Thermal stability of the isothermally cured resins was evaluated using dynamic thermogravimetry in nitrogen atmosphere. No significant change has been observed in the char yield of all the samples, but it was highest in the system cured using either Cystine alone (EC‐1) or a mixture of DDS/Cystine (EC‐2, EC‐3, and EC‐4). © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
This article describes the curing and thermal behavior of diglycidyl ether of bisphenol A with phthalic anhydride (PA)/pyromellitic anhydride/diaminodiphenyl sulfone (DDS) or a mixture of anhydrides and amines in varying ratios as curing agents. The kinetics of the curing behavior was investigated with a multiple‐rate method. The activation energy of the curing reaction as determined in accordance with Ozawa's method was found dependent on the structure of the anhydride and on the ratio of amines to anhydrides. The activation energy was highest with sample DP3 (0.25 : 0.75) and DM3 (0.25 : 0.75). We evaluated the thermal stability of epoxy resin, cured isothermally, by recording thermogravimetric traces in a nitrogen atmosphere. The char yield was highest for resins cured with a mixture of DDS and PA (0.5 : 0.5) and a mixture of DDS and pyromellitic dianhydride (0.25 : 0.75). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3919–3925, 2006  相似文献   

6.
Poly(ether sulfone imide)s (PEI) with molecular weight Mn ∼ 104 were synthesized from 3,3′,4,4′-benzophenone tetracarboxylic dianhydride and amine terminated poly(ether sulfone) having molecular weights ranging from Mn ∼ 400 to Mn ∼ 4000. Thus, the PEIs had the same molecular weight but various imide and ether sulfone contents. The PEIs were mixed with a stoichiometric mixture of diglycidyl ether bis-phenol-A (DGEBA)/diamino diphenyl sulfone (DDS). The effect of PEI on the curing reaction of DGEBA/DDS and the morphology of the polymer blend were studied by differential scanning calorimetry (DSC) and optical microscopy. In the DGEBA/DDS/PEI blend with a fixed PEI molecular weight and PEI concentration but with various imide content, the experimental data revealed the PEI with a higher content of ether sulfone had a lower Tg and a better compatibility with solvents and epoxy resins; the curing reaction rate of DGEBA/DDS/PEI was faster for PEI with a higher imide content; the DSC data of cured DGEBA/DDS/PEI showed two Tgs, indicating phase separation between PEI and cured epoxy resins; and the data of optical microscopy showed that the compatibility of PEI with epoxy resins increased with the content of ether sulfone in PEI. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
This paper describes the synthesis and characterization of a bisphthalonitrile monomer having an imide linkage prepared by reacting 4,4′‐(hexafluoroisopropylidene) diphthalic anhydride with 4‐(4‐aminophenoxy) phthalonitrile. The structure of the monomer was confirmed by Fourier transform infrared, 1H‐NMR, and 13C‐NMR spectroscopy. The curing behavior of bisphthalonitrile monomer was investigated in the absence or presence of different diamines using differential scanning calorimetry. Diamines 4,4′‐diaminodiphenyl ether (DDE) and 4,4′‐diaminodiphenylsulfone (DDS) were used to investigate the effect of the structure of diamines on the curing behavior of bisphthalonitrile monomer. An exothermic transition due to curing was observed in the DSC scan, and the curing temperature was found to be dependent on the nucleophilicity of the amine. DDE was found to be more reactive than DDS. The thermal stability of the cured resins was evaluated using thermogravimetry in nitrogen atmosphere. All of the cured samples were stable up to 400 °C and leave behind 62% char residue at 800 °C, which was found to be dependent on the structure of the diamine used for curing as well as on the curing conditions. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46151.  相似文献   

8.
In order to improve the thermal resistance of diglycidyl ether of bisphenol‐A (DGEBA), phosphorus‐containing di‐ and tri‐amines, i.e., bis (3‐aminophenyl) methyl phosphine oxide (B) and tris (3‐aminophenyl) phosphine oxide (T), were used as curing agents. The effect of phosphorus content on the curing characteristics and char residue of cured resins in nitrogen atmosphere was evaluated by using different molar ratios of conventional curing agent, i.e. 4, 4′‐diaminodiphenyl sulfone (D) and amine B or T. Activation energy of curing, as evaluated by using the multiple heating rate method, was lowest when triamine T (61.0 kJmol?1) was used as hardener and was highest when D (68.7 kJmol?1) was used. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 390–395, 2001  相似文献   

9.
A simple imide compound, 4‐amino‐phthalimide (APH), was synthesized as a curing agent for epoxy resin. APH was prepared from the hydration of 4‐nitro‐phthalimide, which was prepared from the nitration of phthalimide. The chemical structure of APH was verified by IR and 1H‐NMR spectra. The thermal properties and dielectric constant (ε) of a phosphorus‐containing novolac epoxy resin cured by APH were determined and compared with those of epoxy resins cured by either 4,4′‐diamino diphenyl methane (DDM) or 4,4′‐diamino diphenyl sulfone (DDS). The results indicate that the epoxy resin cured by APH showed better thermal stability and a lower ε than the polymer cured by either DDM or DDS. This was due to the introduction of the imide group of APH into the polymer structure. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
The curing behaviour of diglycidyl ether of bisphenol‐A (DGEBA) was investigated by differential scanning calorimetry using bis(4‐carboxyphenyl) dimethyl silane (CPA) as a crosslinking agent and imidazole as a catalyst. Two exotherms were observed in the absence of catalyst in the temperature range 166–328 °C. A significant decrease in the curing temperature was observed when 0.1% imidazole was used as catalyst. Further increase in the concentration of imidazole resulted in a decrease in the peak exotherm temperature. The effect of stoichiometry of functional groups on the curing behaviour of DGEBA was investigated by taking varying mole ratios of CPA, ranging from 1 to 2.5, keeping the concentration of imidazole as 0.1% w/w. The heat of polymerization (ΔH) was found to be maximum at a molar ratio of 1:1.75 (DGEBA:CPA). Mixtures of diaminodiphenyl sulfone (DDS and CPA or phthalic anhydride (PA) and CPA in ratios of 1:0, 0.25:0.75, 0.5:0.5, 0.75:0.25) were also used to investigate the curing behaviour of DGEBA. A significant decrease in curing temperature of DGEBA/DDS was observed on partially replacing DDS with CPA, whereas marginal change in the curing temperatures was observed on replacing phthalic anhydride with CPA. The thermal stability of epoxy resin, cured isothermally, was evaluated by recording thermogravimetry/dynamic thermogravimetry traces in nitrogen atmosphere. The percentage char yield was highest for the sample cured using 1.75 mole of CPA. Copyright © 2003 Society of Chemical Industry  相似文献   

11.
Two phosphorus‐containing diacids were synthesized from 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐oxide (DOPO) and either maleic acid or itaconic acid and then reacted with diglycidyl ether of bisphenol A (DGEBA) to form two series of advanced epoxy resins. Reaction conditions, such as reaction time, temperature and catalyst, are discussed in this article. After curing with 4,4'‐diaminodiphenyl sulfone (DDS), thermal properties of cured epoxy resins were studied using dynamic mechanical analysis (DMA) and thermal gravimetric analysis (TGA). The flame retardancy of cured epoxy resins was evaluated using a UL‐94 measurement. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 228–235, 2000  相似文献   

12.
Non‐amine‐derived tetrafunctional epoxies have several advantages over the amine‐derived N,N,N′,N′‐tetraglycidyl‐4,4′‐diaminodiphenyl methane (TGDDM) in high temperature applications. Although two non‐amine‐derived tetrafunctional epoxies were developed in our laboratory, further improvements in toughness using less loading amount is still desirable. Thus, a tertiary‐amine‐free, non‐planar and triphenylmethane‐containing tetrafunctional epoxy (STFE) with a sulfone spacer was synthesized. When it was mixed with diglycidyl ether of bisphenol A (DGEBA) and cured with 4,4′‐diaminodiphenylsulfone (DDS), both thermal and mechanical performances outperformed TGDDM. Moreover, STFE modified system shows the highest toughness (35.7 kJ m–2) among three amine‐free and triphenylmethane‐containing epoxies at merely 5 wt% loading. Molecular simulation and thermomechanical analysis results suggest that the improved mechanical properties could be related to the geometry of the molecule and larger free volume. Despite a marginal drop in Tg, the thermal degradation temperature is better than that of TGDDM/DDS. In addition, the moisture resistance of STFE/DGEBA/DDS is much better than that of TGDDM/DDS. Thus, STFE modified DGEBA could be a potential replacement for TGDDM in some high temperature applications. © 2020 Society of Chemical Industry  相似文献   

13.
A novel adamantane‐containing epoxy resin diglycidyl ether of bisphenol‐adamantane (DGEBAda) was successfully synthesized from 1,3‐bis(4‐hydroxyphenyl)adamantane by a one‐step method. The proposed structure of the epoxy resin was confirmed with Fourier transform infrared, 1H‐NMR, gel permeation chromatography, and epoxy equivalent weight titration. The synthesized adamantane‐containing epoxy resin was cured with 4,4′‐diaminodiphenyl sulfone (DDS) and dicyandiamide (DICY). The thermal properties of the DDS‐cured epoxy were investigated with differential scanning calorimetry and thermogravimetric analysis (TGA). The dielectric properties of the DICY‐cured epoxy were determined from its dielectric spectrum. The obtained results were compared with those of commercially available diglycidyl ether of bisphenol A (DGEBA), a tetramethyl biphenol (TMBP)/epoxy system, and some other associated epoxy resins. According to the measured values, the glass‐transition temperature of the DGEBAda/DDS system (223°C) was higher than that of the DGEBA/DDS system and close to that of the TMBP/DDS system. TGA results showed that the DGEBAda/DDS system had a higher char yield (25.02%) and integral procedure decomposition temperature (850.7°C); however, the 5 wt % degradation temperature was lower than that of DDS‐cured DGEBA and TMBP. Moreover, DGEBAda/DDS had reduced moisture absorption and lower dielectric properties. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

14.
Amine terminated poly(ether sulfone imide) (PESI) with various imide and ethersulfone contents but similar polymer molecular weights were blended with diglycidyletherbisphenol-A (DGEBA) and cured with diaminodiphenylsulfone (DDS). The imide group, a tertiary amine, is a catalyst of the curing reaction of DGEBA with DDS, but it is poorly compatible with uncured epoxy resin. The ethersulfone group is not a catalyst of the curing reaction of DGEBA with DDS, but it has a similar chemical structure as DDS and is compatible with epoxy resin while it is at a low degree of curing. Since PESIs used in this study had similar molecular weights, increasing imide content of PESI would reduce ethersulfone content. The influence of imide and ethersulfone contents of PESI on the phase separation and curing reaction of DGEBA/DDS/PESI blend was investigated using differential scanning calorimetry (DSC), time-resolved light scattering (TRLS), and polarized optical microscopy (POM). Though the imide group has a catalysis effect on the curing reaction of DGEBA with DDS, however, its poor compatibility with epoxy resin retards the curing reaction. Our experimental results revealed the morphology of the cured blends and the curing behavior was a compromise result of catalysis and compatibility of PESI with epoxy resin.  相似文献   

15.
3,3′‐Diaminodiphenyl sulfone (3,3′‐DDS) was reacted with acetaldehyde in the presence of sodium triacetoxy borohydride via reductive amination to yield a 3,3′‐DDS based secondary diamine, N,N′‐diethyl‐3,3′‐diaminodiphenyl sulfone. Near IR analysis indicated that the 5060 cm?1 peak for primary amine (? NH2) in 3,3′‐DDS was absent in the reaction product spectrum. The ? NH2 proton peak at δ 5.66 ppm shifted to δ 6.16 ppm in the product. Methyl and methylene protons of CH3? CH2? NH? Ph? group were observed at δ 3.01 and 1.12 ppm, respectively, in the product. The carbon NMR spectrum of the reaction product showed new peaks at δ 37.46 and 14.47 ppm that further confirmed secondary amine formation. The liquid chromatography coupled mass spectra peaks at 248–250 for 3,3′‐DDS and 304 for the reaction product further supported the formation of N,N′‐diethyl‐3,3′‐diaminodiphenyl sulfone. A blend of N,N′‐diethyl‐3,3′‐diaminodiphenyl sulfone with diglycidyl ether of bisphenol‐A (DGEBA) epoxy prepolymer started reacting at about 110–125°C surpassing an energy barrier of ~ 66 kJ/mol as determined via differential scanning calorimetry analysis. Reaction kinetics were characterized via near IR spectroscopy specific to the reaction between secondary amine and DGEBA epoxy prepolymer. The results confirmed >97% conversion at a cure protocol of 5 h at 80°C, 5 h at 100°C, 11 h at 125°C, and 6 h at 185°C. N,N′‐diethyl‐3,3′‐diaminodiphenyl sulfone‐DGEBA thermoplastics displayed tensile and flexural modulii of 3.08 and 2.86 GPa, respectively, and glass transition temperature (Tg) of 120.77°C. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
The improvement of flame-retardation of thermosetted epoxy–amine resins was attempted by chemically incorporating phosphorus-containing reagents. By reacting 4,4′-diglycidylether of bisphenol A (DGEBA) with dialkyl (or aryl) phosphate, it was possible to chemically modify the epoxy resin and then cure it in the presence of 4,4′-diaminodiphenylsulfone (DDS) to obtain epoxy-amine resin with good flame-retardant and thermal stability behaviors. The quantitative aspect of the addition of dialkyl (or aryl) phosphate onto glycidyle oxiranes was evaluated by elemental analysis of the modified epoxy-amine resins. Flammability and thermal behaviors of modified DGEBA/DDS resins depend on the nature of phosphate groups (the best flame-retardation was observed on resins bearing phenyl phosphate groups) and their concentration in the material. In relation to DGEBA/DDS samples containing additives of the same structure [trialkyl(or aryl) phosphate], cured resins incorporating chemically bonded phosphate groups show a better flame-retardation. On the contrary to the nonomodified DGEBA/DDS [with or without trialkyl (or aryl) phosphate as additive], combustion of modified DGEBA/DDS resins is accompanied by formation of intumescent char. Chemical modification of DGEBA by dialkyl (or aryl) phosphates can be carried out in situ during the curing of epoxy resins without change in the fire behavior. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
Three novel aromatic phosphorylated diamines, i.e., bis N,N′‐{3‐[(3‐aminophenyl)methyl phosphinoyl] phenyl} pyromellitamic acid (AP), 4,4′‐oxo bis N,N′‐{3‐[(3‐aminophenyl)methyl phosphinoyl] phenyl}phthalamic acid (AB) and 4,4′‐hexafluoroisopropylidene‐bis N,N′‐{3‐[(3‐aminophenyl)methyl phosphinoyl] phenyl}phthalamic acid (AF) were synthesized and characterized. These amines were prepared by solution condensation reaction of bis(3‐aminophenyl)methyl phosphine oxide (BAP) with 1,2,4,5‐benzenetetracarboxylic acid anhydride (P)/3,3′,4,4′‐benzophenonetetracarboxylic acid dianhydride (B)/4,4′‐(hexafluoroisopropylidene)diphthalic acid anhydride (F), respectively. The structural characterization of amines was done by elemental analysis, DSC, TGA, 1H‐NMR, 13C‐NMR and FTIR. Amine equivalent weight was determined by the acetylation method. Curing of DGEBA in the presence of phosphorylated amines was studied by DSC and curing exotherm was in the temperature range of 195–267°C, whereas with conventional amine 4,4′‐diamino diphenyl sulphone (D) a broad exotherm in temperature range of 180–310°C was observed. Curing of DGEBA with a mixture of phosphorylated amines and D, resulted in a decrease in characteristic curing temperatures. The effect of phosphorus content on the char residue and thermal stability of epoxy resin cured isothermally in the presence of these amines was evaluated in nitrogen atmosphere. Char residue increased significantly with an increase in the phosphorus content of epoxy network. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2235–2242, 2002  相似文献   

18.
Epoxy resins based on 4,4′-dihydroxydiphenylsulfone (DGEBS) and diglycidyl ether of bisphenol A (DGEBA) were prepared by alkaline condensation of 4,4′-dihydroxydiphenylsulfone (bisphenol S) with epichlorohydrin and by recrystallization of liquid, commercial bisphenol A-type epoxy resin, respectively. Curing kinetics of the two epoxy compounds with 4,4′-diaminodiphenylmethane (DDM) and with 4,4′-diaminodiphenylsulfone (DDS) as well as Tg values of the cured materials were determined by the DSC method. It was found that the ? SO2? group both in the epoxy resin and in the harener increases Tg values of the cured materials. DGEBS reacts with the used hardeners faster than does DGEBA and the curing reaction of DGEBS begins at lower temperature than does the curing reaction of DGEBA when the same amine is used. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
The curing behavior of epoxy resins prepared by reacting epichlorohydrin with 4,4′-diaminodiphenyl methane (DADPM)/4,4′-diaminodiphenyl ether (DADPE) or 4,4′-diaminodiphenyl sulfone (DDS) was investigated using DDS and tris-(m-aminophenyl)phosphine oxide (TAP) as curing agents. A broad exothermic transition with two maxima were observed in the temperature range of 100–315°C when TAP was used as the curing agent. The effect of varying DDS concentration on curing behavior of epoxy resin was also investigated. Peak exotherm temperature (Texo) decreased with increasing concentration of DDS, whereas heat of curing (ΔH) increased with an increase in amine concentration up to an optimum value and then decreased. Thermal stability of the resins, cured isothermally at 200°C for 3 h, was investigated using thermogravimetric analysis in a nitrogen atmosphere. Glass fiber-reinforced multifunctional epoxy resin laminates were fabricated and the mechanical properties were evaluated. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
Syntheses of new adducts from glycidyl methacrylate and the following amines: aniline, p‐phenylenediamine, 4,4′‐oxydianiline, 4,4′‐diaminodiphenylmethane, 4,4′‐diaminodiphenyl sulfone, 4,4′‐thiodianiline, and 4,4′‐diaminodicyclohexylmethane, are presented. These adducts were copolymerized with glycidyl methacrylate. The curing process was initiated thermally and by UV light. Thermomechanical properties of the obtained compositions were studied. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2461–2466, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号