首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conducting polyaniline (PANI) was synthesized in mesoporous silica SBA‐15. The investigations of XRD, N2 adsorption–desorption, and IR spectra confirm the existence of polyaniline in the channels of SBA‐15 hosts. The impedance of PANI/SBA‐15 composites was studied at different relative humidity (RH) levels, ranging from 11 to 95% RH. The loadings of PANI as well as the concentration of HCl solution have substantial influence on the impedance values. The variation in impedance value of all PANI/SBA‐15 composites is more obvious than that of bulk PANI samples at the same RH. All these results imply that PANI/SBA‐15 composites may have better humidity‐sensitive properties than those of bulk PANI samples. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1597–1601, 2004  相似文献   

2.
Adsorption has been proven to be the most efficient method for quickly lowering the concentration of dissolved dyes in an effluent. In this regard, activated carbon is the most widely used adsorbent for removal of dyes from aqueous solution. However, the high cost of production and regeneration make it uneconomical. Therefore, inorganic adsorbents (e.g. zeolites) with high surface areas have been used as alternatives to carbon adsorbents. Microporous zeolites ZSM‐5, NH4‐Beta, MCM‐22 and mesoporous materials MCM‐41 have been investigated for the removal of dyes from aqueous solutions and they show effective adsorption performance. SBA‐15 possesses a larger pore size and pore wall thickness than MCM‐41. As a result, SBA‐15 has greater potential for the adsorption of methylene blue with larger molecule size and higher hydrothermal stability than the M41S family. SBA‐15 is an excellent adsorbent for methylene blue (MB), exhibiting 280 mg g?1 adsorption capacity and about 100% fading rate for MB. The adsorptive process is so fast that adsorption equilibrium is achieved in 5 min. In addition, SBA‐15 can be effectively recovered by calcination and reused 10 times without significant loss in removal of MB from aqueous solution. The efficient adsorption of MB molecules onto SBA‐15 was ascribed to MB adsorbed into the pore channels of SBA‐15, which was confirmed by nitrogen physisorption analysis of the adsorbent before and after adsorption. The long reuse life of the adsorbent suggests a high potential for application in industry. Copyright © 2010 Society of Chemical Industry  相似文献   

3.
4.
The electrodeposition of polyaniline–polypyrrole composite coatings on aluminum was successfully performed by using cyclic voltammetry. Oxalic acid was used as the electrolyte. Electrodeposition was carried out at a scan rate of 20 mV/s by varying the number of cycles. An anodic peak current at around ?0.1 V versus saturated calomel electrode (SCE) was observed in the cyclic voltammograms. This peak is due to the oxidation and adsorption of hydrogen. The cyclic voltammograms also show another anodic peak current at around 1.0 V versus SCE, which is the characteristic peak of the polyaniline–polypyrrole composite. The behavior of this peak with respect to the number of cycles is discussed in detail. A corresponding cathodic peak current at around ?0.7 V versus SCE was also observed in the cyclic voltammograms. The infrared spectra of the composite coatings revealed the infrared peaks of both polypyrrole and polyaniline. The scanning electron micrographs of the coatings indicate a morphology completely different from its homopolymers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1970–1977, 2002  相似文献   

5.
Supramolecular assemblies with a bottle‐brush structure are obtained by inclusion complexation between β‐cyclodextrin and adamantane. β‐cyclodextrin‐modified chitosan is synthesized via the aldimine condensation reaction between β‐cyclodextrin monoaldehyde and chitosan as the host. The guest is prepared through the esterification reaction between methoxypoly(ethylene glycol) and 1‐adamantanecarboxylic acid chloride. The supramolecular assemblies are formed through the inclusion of adamantane‐modified methoxypoly(ethylene glycol) into the β‐cyclodextrin cavity on the chitosan chain. Fourier transform infrared and 1H NMR spectra were used to prove that the host, guest and assemblies were successfully obtained. UV?visible spectra were employed to confirm the formation of assemblies. Furthermore, the size of the particles in the assembled solution, the change before and after self‐assembly, and the effect of the addition of competitive molecules were studied by dynamic light scattering measurements. The results indicate that supramolecular assemblies have formed successfully which might be used to realize the biomimetic structure of the articular cartilage proteoglycan. © 2014 Society of Chemical Industry  相似文献   

6.
The electrically conducting polyfuran/poly(2‐iodoaniline) (PFu/P2IAn) and P2IAn/PFu composites were prepared by chemical oxidative polymerization using polyfuran and poly(2‐iodoaniline) in HCl and CHCl3 media. The conductivities of composites were determined as a function of the amount of guest polymer. It was found out that the conductivities of P2IAn/PFu composites increased 100‐fold, whereas the conductivities of PFu/P2IAn composites did not show a specific increase. The composite compositions were altered by varying guest polymer feed ratios during preparation. Generally, the electrical conductivities of P2IAn/PFu composites increased with increasing the amount of PFu. Homopolymers and composites were further characterized thermally, employing thermogravimetry (TGA) and morphologically employing scanning electron microscopy (SEM). Further evidences concerning the polymer structures were obtained by FTIR and UV‐vis spectroscopies and magnetic susceptibility measurements. TGA results revealed that PFu/P2IAn among the homopolymers (PFu and P2IAn) and P2IAn/PFu composite have the highest thermal stability. The composites synthesized varying the host and the guest polymer order have different conductivities, morphological structures, and thermal properties. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2823–2830, 2003  相似文献   

7.
8.
9.
Mesoporous silica SBA‐15 synthesized from Pluronic P123 and tetraethoxysilane was used as a synergistic agent on the flame retardancy of polypropylene (PP)/intumescent flame‐retardant (IFR) system. Limiting oxygen index (LOI), UL‐94 rating and thermogravimetric analysis were used to evaluate the synergistic effect of SBA‐15 on PP/IFR system. It showed that PP/IFR system could reach V‐0 with loading of SBA‐15 ranging from 0.5 to 3 wt%, while without SBA‐15 it had no rating at UL‐94 test. The LOI value increased from 25.5 to 32.2 when the loading of SBA‐15 was 1 wt%. The thermal stability of PP/IFR was improved in the presence of SBA‐15 and the amount of the char residue at 600° C was increased from 8.96 to 16.42 wt% when loading of SBA‐15 varied from 0.5 to 5 wt%. Laser Raman spectroscopy (LRS) and scanning electron microscopy were employed to study the morphology of the char residue of PP/IFR system with and without SBA‐15. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Removal of ammonium cations from aqueous solution was investigated using an arene‐sulphonic acid functionalised mesostructured SBA‐15 material as adsorbent. Arene‐sulphonic acid‐SBA‐15 (AS‐SBA‐15) was prepared via a co‐condensation strategy using tetraethylorthosilicate (TEOS) and 2‐(4‐chlorosulphonylphenyl)ethyltrimethoxysilane (CSPTMS) as framework precursors under acidic conditions. The material exhibited high surface area (680 m2/g) and total pore volume (0.84 mL/g). The effects of adsorbent loading, initial ammonium concentration, temperature, pH and the presence of competitive ions on the adsorption performances were investigated. The ammonium removal increased with the increase of the adsorbent loading and the decrease of the initial concentration. The adsorption capacity decreased with increasing the temperature. Maximum adsorption capacity obtained at 5°C was ca. 19 mg NH/g adsorbent. The isotherms data were studied using different adsorption models and thermodynamic parameters were calculated. Competitive ions such K+ and Na+ slightly affected the ammonium adsorption. After six adsorption–desorption cycles, the adsorbent retained its adsorption capacity.  相似文献   

11.
In this study, Cu‐loaded Santa Barbara amorphous (SBA)‐15 catalysts were synthesized by impregnation method and further used for catalytic wet peroxidation (CWPO) of pyridine from aqueous solution using hydrogen peroxide as oxidant. The synthesized catalysts have been characterized by Brunauer–Emmett–Teller surface area: temperature‐programmed reduction, H2‐chemisorption, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. Characterization results indicate good dispersion of Cu species inside the porous structure of SBA‐15. The effect of various parameters such as Cu loading on SBA‐15, pH, catalyst dose, H2O2 concentration, and temperature have been studied for their effect on CWPO of pyridine. More than 97% pyridine removal and 92% total organic carbon removal was achieved at optimum condition. Cu/SBA‐15 showed stable performance during reuse for six cycles with negligible copper leaching. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2577–2586, 2013  相似文献   

12.
A series of Mg‐modified SBA‐15 mesoporous silicas with different MgO contents were successfully synthesized by a simple one‐pot synthesis method and further impregnated with Ni. The Mg‐modified SBA‐15 materials and supported Ni catalysts were characterized by N2 physisorption (BET), X‐ray diffraction (XRD), temperature‐programmed desorption of CO2 (CO2‐TPD), temperature‐programmed H2 reduction (H2‐TPR), and temperature‐programmed hydrogenation (TPH) techniques and used for methane dry reforming with CO2. CO2‐TPD results proved that the addition of Mg increased the total amount of basic sites which was responsible for the enhanced catalytic activity over the Mg‐modified Ni catalyst. The excellent catalytic stability of Ni/8Mg‐SBA‐15 was ascribed to less coking and higher stability of the Ni particle size due to the introduction of Mg.  相似文献   

13.
Tungstophosphoric acid (TPA)‐containing mesoporous santa barbara amorphous (SBA)‐15 materials were synthesized by impregnation of TPA into hydrothermally synthesized SBA‐15. TPA was incorporated to the porous framework of silica with different W/Si ratios, using TPA hydrate as the acid source. The synthesized materials had a surface area range of 212–825 m2 g?1, depending on the TPA loading and exhibited Type IV adsorption–desorption isotherms. Energy dispersive spectrometry and X‐ray photoelectron spectroscopy (XPS) analyses showed that TPA was successfully penetrated into mesopores of the SBA‐15 material. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis of the pyridine adsorbed synthesized materials revealed the existence of Lewis and Brønsted acid sites in the synthesized materials. Their performances were tested in the degradation of polyethylene by thermogravimetric analysis. An increase in TPA content significantly lowered the degradation temperature and activation energy of the polyethylene degradation reaction. In the presence of TPA‐incorporated SBA‐15 catalyst, activation energy was reduced to approximately half‐value of the value found in the absence of the catalyst. © 2011 American Institute of Chemical Engineers AIChE J, 58: 2466–2472, 2012  相似文献   

14.
Directed isomerisation of safflower oil under very low hydrogen partial pressure of 7 psi over a novel bifunctional highly structured rhodium‐based catalyst (Rh/SBA‐15), having narrow pore size distribution ranging from 4 to 8 nm, and BET‐specific surface of ≈1,000 m2 g?1, was investigated as a new chemocatalytic approach for vegetable oil hardening and simultaneously producing health‐beneficial conjugated linoleic acids (CLA). Time course profiles of (cis‐9, trans‐11)‐; (cis‐10, trans‐12)‐; (trans‐10, cis‐12)‐; (cis,cis)‐ and (trans, trans)‐octadecadienoic isomers (CLAs) as well as the other fatty acids traditionally encountered during the hydrogenation of vegetable oils are presented and discussed under selected process conditions. Preliminary results show that it is possible to tailor characteristics of the hydrogenation catalyst in such way to confer its bi‐functional activity: hydrogenation and conjugation isomerisation. © 2011 Canadian Society for Chemical Engineering  相似文献   

15.
Adsorption of nitrate and monovalent phosphate anions from aqueous solutions on mono, di‐ and tri‐ammonium‐functionalised mesoporous SBA‐15 silica was investigated. The adsorbents were prepared via a post‐synthesis grafting method, using either 3‐aminopropyltrimethoxysilane (N‐silane) or [1‐(2‐aminoethyl)‐3‐aminopropyl]trimethoxysilane (NN‐silane) or 1‐[3‐(trimethoxysilyl)‐propyl]‐diethylenetriamine (NNN‐silane), followed by acidification in HCl solution to convert the attached surface amino groups to positively charged ammonium moieties. The nominal loading of amino moieties on the SBA‐15 surface was varied from 5% to 20% as organoalkoxysilane/silica molar ratio. The adsorption experiments were conducted batchwise at room temperature. Results showed that adsorption capacity increased with increasing the concentration of monoammonium groups on the SBA‐15 adsorbent. Nitrate adsorption capacity increased from 0.34 to 0.66 mmol ${\rm NO}_{3}^{{-} } /{\rm g}$ adsorbent while phosphate adsorption capacity increased from 0.34 to 0.63 mmol ${\rm H}_{2} {\rm PO}_{4}^{{-} } /{\rm g}$ adsorbent when the molar ratio organoalkoxysilane/silica was varied from 5% to 20%, respectively. Also, for the same organoalkoxysilane/silica molar ratio of 10%, the adsorption capacity increased with the increase of the number of protonated amines in the functional groups. Therefore, maximum adsorption capacities of 0.80, 1.16 and 1.38 mmol ${\rm NO}_{3}^{{-} } /{\rm g}$ adsorbent and 0.72, 0.82 and 1.17 mmol ${\rm H}_{2} {\rm PO}_{4}^{{-} } /{\rm g}$ adsorbent were obtained using mono‐, di‐ and triammonium functionalised SBA‐15 adsorbents, respectively. © 2011 Canadian Society for Chemical Engineering  相似文献   

16.
17.
Three environment friendly β‐cyclodextrin polymer electrorheological (ER) particles (NS‐β‐CDP, WSS‐β‐CDP, and CLS‐β‐CDP) were synthesized by copolymerization through a mixture of β‐cyclodextrin (β‐CD) and epichlorohydrin in the absence of starch or in the presence of water‐soluble and water‐insoluble starch, respectively. The electrorheological properties of suspensions in silicone oil were then investigated under direct current (dc) electric fields. It was found that the yield stress of the typical WSS‐β‐CDP ER fluid was 6.2 kPa in 4 kV/mm, which is 35% higher than that of NS‐β‐CDP and similar to that of CLS‐β‐CDP. In the meantime, it can display a high ER performance even over a range of 65–95°C. The structures of these polymers were characterized by FT‐IR and Raman spectrometry, respectively. The results demonstrated that all of these polymers keep the original structural character of β‐CD and the copolymerizations between starch and β‐CD indeed occur. Furthermore, it was found that there was some relationship between the characteristic strength of polymers and their dielectric properties. Hence, the improvement of copolymer dielectric properties resulted in the enhancement of ER effects. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1681–1686, 2004  相似文献   

18.
Polyaniline–epoxy novolac resin composite materials (PANI–RESIN) were prepared by emulsion polymerization technique and characterized by infrared and electronic absorption spectra, conductivity, particle size, and thermogravimetric and differential scanning calorimetric analysis. The conductivity of PANI–RESIN samples decreased with the addition of the RESIN as 0.1, 0.02, and 0.04 S/cm for 25, 50, and 75% addition of the RESIN, respectively. TGA thermograms of PANI–RESIN samples are more or less similar to those of polyaniline salts (PANI), which were stable up to 225°C. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 3507–3512, 1999  相似文献   

19.
20.
Two kinds of conductive polypyrrole composites were prepared by in‐situ polymerization of pyrrole in a suspension of chlorinated polyethylene powder or in a natural rubber latex using ferric chloride as oxidizing agent. The preparation conditions were studied and the results showed that it is better to swell the chlorinated polyethylene powder with the monomer first, followed by addition of the oxidant, than to add the oxidant first, and that conversion can reach 98% for 6 h at room temperature. The conductivity percolation threshold of the composite is about 12%. The composites can be processed repeatedly, exhibiting a maximum tensile strength over 9 MPa and a maximum conductivity near 1 S cm−1. The polypyrrole/natural rubber composites were prepared successfully by using a nonionic surfactant (Peregal O) as stabilizer at pH less than 3 with a molar ratio of FeCl3/pyrrole = 2.5 below 45 °C. The latter composites show a low conductivity percolation threshold about 6%, a maximum tensile strength over 10 MPa and a maximum conductivity over 2 S cm−1. The composites were characterized by FTIR and TGA. The polypyrrole/chlorinated polyethylene composites are very stable in air and almost no decrease of conductivity was observed for over 10 months examined. © 1999 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号