首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure–property relationship was studied for partially aliphatic polyimides containing alicyclic dianhydride and aromatic diamine unit. Rel-[1S,5R,6R]-3-oxabicyclo[3,2,1]octane-2,4-dione-6-spiro-3′-(tetrahydrofuran-2′,5′-dione) (DAn) was used as an unsymmetrical spiro dianhydride, and 1,2,3,4-cyclopentanetetracarboxylic dianhydride (CPDA) and bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (BOCA) were used as symmetrical non-spiro dianhydrides. The dianhydrides were polymerized with two aromatic diamines, 4,4′-oxydianiline (ODA) and 4,4′-(hexafluoroisopropylidene)dianiline (FDA), using a conventional two-step chemical imidization method. Structures of the PAl-PIs prepared were confirmed by 1H-NMR and FT-IR spectroscopy. Solubility of the polyimides was tested in various organic solvents. Thermal properties of the PAl-PIs were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). UV-visible spectroscopy was performed to evaluate the optical transparency of the polyimides. The effect of monomer structure on the properties was studied. The PAl-PIs prepared from DAn showed improved solubility, thermal properties, and transparency when compared with PAl-PIs derived from CPDA and BOCA. It is considered that the rigid, unsymmetrical spiro structure of DAn leads to rigidity, bulkiness, irregularity, and non-linearity of the polyimide chains, resulting in the enhanced properties of DAn polyimides. The molecular arrangement in the polyimides has also been studied by wide-angle X-ray diffraction (WAXD) and was correlated with the properties.  相似文献   

2.
This study presents an investigation on polyimides derived from a unfunctionalized symmetric cyclopentyl‐containing alicyclic cardo‐type dianhydride with ester linkage 1,1‐bis(4‐(3,4‐dicarboxylbenzoyloxy)phenyl)cyclopentylene dianhydride (BDPCP) that was readily accessed starting from cyclopentanone through two steps in high yield. Two series of polyimides, Cardo‐type series (CPI‐x) and analogous aromatic series (ArPI‐x) were prepared from condensation of BDPCP and aromatic 3,3′,4,4′‐Oxydiphthalic dianhydride with four aromatic diamines, respectively. Comparative studies revealed that CPI polymers show more favorable properties including better solubility in organic solvents, higher transparency with lower cut‐off wavelength (λ0) ranging in 395–375 nm than 425–405 nm, lower water absorption ranging in 0.66–1.14% and surface energy 23.71–32.77 mN/m than 1.01–1.28% and 29.52–41.99 mN/m of ArPI analogs. Meanwhile, CPI series exhibit considerable mechanical properties with tensile strengths ranging in 87.6–102.9 MPa, elongations at break 6.6–8.9%. Owing to the moderate strain in cyclopentyl ring, CPI series retain good thermal properties with the glass transition temperature (Tg) in the range of 217–271°C. Dynamic dielectric measurement revealed that Cardo‐type dianhydride BDPCP endows CPI‐4 film with lower dielectric constant (ε′) 3.34 at 1 MHz and 25°C and dielectric loss (ε′′) 0.0064 at 1 kHz and 25°C than 3.49 and 0.013 for ArPI‐4 film. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42670.  相似文献   

3.
Two binary polyimide (PI) blends having a common monomer (diamine or dianhydride) were prepared. The first system was composed of PIs obtained from an alicyclic and flexible dianhydride, namely 5‐(2,5‐dioxotetrahydrofurfuryl)‐3‐methyl‐3‐cyclohexene‐1,2‐dicarboxylic acid anhydride (DOCDA) and two aromatic diamines: 4,4′‐oxydianiline (ODA) and p‐phenylenediamine, respectively. In the second system, ODA was combined with DOCDA and (hexafluoroisopropyldiene)diphthalic dianhydride (6FDA). Films of the resulted blends were transparent, suggesting their homogeneity. According to differential scanning calorimetry data, the existence of a single Tg intermediate to those of the pure PIs confirmed the miscibility of blends. Incorporation of aliphatic and asymmetric DOCDA moieties, hexafluoropropyldiene groups and ether linkages in the molecular structure of PIs reduced the charge transfer interactions and significantly increased transparency and optical gap energy, especially for the poly(DOCDA‐ODA)/poly(6FDA‐ODA) blend. These interactions are also reflected in viscosity dependence on shear rate, indicating that they are slightly stronger when the aromatic 6FDA component prevails. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

4.
We report a new method for the preparation of asymmetric diamines using 4,4′‐oxydianiline (4,4′‐ODA) as the starting material. By controlling the equivalents of bromination agent, N‐bromosuccinimide, we were able to attach bromide and phenyl substituents at the 2‐ or 2,2′,6‐positions of 4,4′‐ODA. Thus, four new asymmetric aromatic diamines, 2‐bromo‐4,4′‐oxydianiline (6), 2,2′,6‐tribromo‐4,4′‐oxydianiline (7), 2‐phenyl‐4,4′‐oxydianiline (8) and 2,2′,6‐triphenyl‐4,4′‐oxydianiline (9), were synthesized by this method. Their structural asymmetry was confirmed using 1H NMR spectroscopy. Asymmetric polyimides (PI10–PI13) were prepared from these diamines and three different dianhydrides (pyromellitic dianhydride (PMDA), 3,3′,4,4′‐biphenyltetracarboxylic dianhydride and 2,2‐bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride) in refluxing m‐cresol. The formed polyimides, except PI10a derived from 6 and PMDA, were all soluble in m‐cresol without premature precipitation during polymerization. These polyimides with inherent viscosity of 0.41–0.96 dL g?1, measured at a concentration of 0.5 g dL?1 in N‐methyl‐2‐pyrrolidone at 30 °C, can form tough and flexible films. Because of the structural asymmetry, they also exhibited enhanced solubility in organic solvents. Especially, polyimides PI11a and PI13a derived from 7 and 9 with rigid PMDA were soluble in various organic solvents at room temperature. The structural asymmetry of the prepared polyimides was also evidenced from 1H NMR spectroscopy. In the 1H NMR spectrum of PI11a, the protons of pyromellitic moiety appeared in an area ratio of 1:2:1 at three different chemical shifts, which were assigned to head‐to‐head, head‐to‐tail and tail‐to‐tail configurations, respectively. These polyimides also exhibited good thermal stability. Their glass transition temperatures ranged from 297 to 344 °C measured using thermal mechanical analysis. © 2013 Society of Chemical Industry  相似文献   

5.
New polyimides with enhanced thermal stability and high solubility were synthesized in common organic solvents from a new dianhydride, 2,2′‐dibromo‐4,4′,5,5′‐benzophenone tetracarboxylic dianhydride (DBBTDA). DBBTDA was used as monomer to synthesize polyimides by using various aromatic diamines. The polymers were characterized by IR and NMR spectroscopy and elemental analysis. These polyimides had good inherent viscosities in N‐methyl‐2‐pyrrolidinone (NMP) and also high solubility and excellent thermo‐oxidative stability, with 5 % weight loss in the range 433 to 597 °C. Copyright © 2004 Society of Chemical Industry  相似文献   

6.
A novel rigid‐rod type dianhydride monomer with phosphine oxide moiety, 4‐(diphenyl phosphine oxide)phenyl pyrromellitic dianhydride (POPPMDA), was synthesized via the Suzuki coupling reaction of 4‐(diphenyl phosphine oxide)phenyl boronic acid (POBB) and 1‐bromo‐2,3,5,6‐tetramethyl benzene (B4MB), followed by oxidation and cyclodehydration. The monomer was characterized by FTIR, NMR, EA, and melting point analyzer and utilized to synthesize polyimides with diamines such as bis(3‐aminophenyl)phenyl phosphine oxide (mDAPPO) and p‐phenylene diamine (pPDA) by varying their ratio. The polyimides were prepared via a conventional two‐step synthesis: preparation of poly(amic‐acid), followed by solution imidization. The polyimides were characterized by FTIR, NMR, DSC, TGA, and TMA, and their solubility, intrinsic viscosity, and adhesive properties were also evaluated. The polyimides exhibited high Tg (342–362°C), good thermal stability (>500°C), excellent adhesive property (134–107 g/mm), and low CTE (28–17 ppm/°C). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
High‐performance alicyclic‐containing polyimides for advanced applications, derived from 5‐(2,5‐dioxotetrahydrofurfuryl)‐3‐methyl‐3‐cyclohexene‐1,2‐dicarboxylic acid anhydride or bicyclo[2.2.2]oct‐7‐ene‐2,3,5,6‐ tetracarboxylic dianhydride and two flexible aromatic diamines, were synthesized by a classical two‐step polycondensation reaction. The dielectric spectra behavior over wide frequency and temperature ranges of 1 Hz‐1 MHz and –150°C÷+250°C, respectively, was investigated according to chemical and micro‐structural aspects. The dielectric constants have low values and are dependent on dianhydride flexibility and diamine links, in relation with the charge–transfer complex (CTC) and free volume, and, consequently, with packing of the polymer chains and polarizable groups per volume units. All polyimide films develop two relaxation processes, i.e., γ and β relaxation, involving different enthalpy and entropy contributions induced by their chemical structures. Frequency–temperature‐dependent conductivity showed that conductivity increased with frequency and also that energy bandgap representation could be suitable for explaining the temperature influence on AC‐conductivity. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

8.
A novel aromatic diamine, 3,3′‐diisopropyl‐4,4′‐diaminophenyl‐4″‐methyltoluene with a 4‐methylphenyl pendant group and isopropyl side groups, was designed and synthesized in this study. Then it was polymerized with various aromatic dianhydrides including pyromellitic dianhydride, 3,3′,4,4′‐biphenyltetracarboxylic dianhydride, 4,4′‐oxydiphthalic anhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride and 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride via a one‐pot high temperature polycondensation procedure to produce a series of aromatic polyimides. These polyimides exhibited excellent solubility even in common organic solvents, such as chloroform and tetrahydrofuran. The flexible and tough films can be conveniently obtained by solution casting. The films were nearly colorless and exhibited high optical transparency, with the UV cutoff wavelength in the range 302–365 nm and the wavelength of 80% transparency in the range 385–461 nm. Moreover, they showed low dielectric constants (2.73–3.23 at 1 MHz) and low moisture absorption (0.13%–0.46%). Furthermore, they also possessed good thermal and thermo‐oxidative stability with 10% weight loss temperatures (T10%) in the range 489–507 °C in a nitrogen atmosphere. The glass transition temperatures of all polyimides are in the range 262–308 °C. Copyright © 2012 Society of Chemical Industry  相似文献   

9.
Zhiming Qiu  Suobo Zhang 《Polymer》2005,46(5):1693-1700
A novel method for the preparation of 2,2′-diphenoxy-4,4′,5,5′-biphenyltetracarboxylic dianhydride have been investigated. This new dianhydride contains flexible phenoxy side chain and a twist biphenyl moiety and it was synthesized by the nitration of an N-methyl protected 3,3′,4,4′-biphenyltetracarboxylic dianhydride and subsequent aromatic nucleophilic substitution with phenoxide. The overall yield was up to 75%. The dianhydride was polymerized with five different aromatic diamines to afford a series of aromatic polyimides. The polyimide properties such as inherent viscosity, solubility, UV transparency and thermaloxidative properties were investigated to illustrate the contribution of the introduction of phenoxy group at 2- and 2′-position of BPDA dianhydride. The resulting polyimides possessed excellent solubility in the fact that the polyimide containing rigid diamines such as 1,4-phenylenediamine and 4,4′-oxydianiline were soluble in various solvents such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, dimethyl sulfoxide and chloroform. The glass-transition temperatures of the polymers were in the range of 255-283 °C. These polymers exhibited good thermal stability with the temperatures at 5% weight loss range from 470 to 528 °C in nitrogen and 451 to 521 °C in air, respectively. The polyimide films were found to be transparent, flexible, and tough. The films had a tensile strength, elongation at break, and Young's modulus in the ranges 105-168 MPa, 15-51%, 1.87-2.38 GPa, respectively.  相似文献   

10.
In this article, a new alicyclic‐functionalized diamine, 1,3‐bis(4‐aminophenoxymethylene)‐1,2,2‐trimethylclopentane (BAMT) was successfully synthesized starting from natural —(D)‐camphor through four reaction steps of oxidation to offer a dicaboxylic acid, reduction to offer a diol, nucleophilic substitution to give a dinitro compound and then reduction to give the final diamine. Two alicyclic‐containing polyimides were prepared by polycondensing BAMT with 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA) and 4,4′‐oxydiphthalicanhydride (ODPA), respectively. For the studies of the structure–property relationships of the polyimides, one aromatic polyimide of 4, 4′‐oxydianiline (ODA) polycondensed with ODPA was prepared in comparison. The alicyclic‐containinig polyimides PI (BPDA‐BAMT) and PI (ODPA‐BAMT) maintain good thermal properties with glass transition temperatures (Tg) of 257°C and 240°C, and temperatures at 5% weight loss (T5) of 443°C and 436°C in nitrogen, respectively. The alicyclic polyimides exhibit tensile strengths of 91.9–133 MPa, Young's moduli of 2.75—3.24 GPa, and elongations at break of 5.6–18%. Compared with the aromatic polyimide PI (ODPA‐ODA), PI (ODPA‐BAMT) shows improved transparency with the UV‐Vis transmittance at 500 nm over 80%. In addition, PI (ODPA‐BAMT) displays better solubility than PI (ODPA‐ODA), which has been confirmed by the bigger d‐spacing value of PI (ODPA‐BAMT) than that of PI (ODPA‐ODA) calculated from the Wide‐angle X‐ray Diffraction spectra. This study indicates that the renewable forestry compound, such as natural —(D)‐camphor, could be a good origin for the structural designing and preparation of alicyclic‐containing polyimides with outstanding combined features suitable for advanced microelectronic and optoelectronic applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
Zhiqiang Hu  Shanjun Li  Xiaoyun Liu 《Polymer》2005,46(14):5278-5283
Five fluorenyl cardo diamines containing different alkyl substituents were synthesized and characterized. A series of fluorenyl cardo polyimides were prepared by polycondensation of these cardo diamines with 4,4′-oxydiphthalic anhydride (ODPA), 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA), 3,3′,4,4′-biphenyl tetracarboylic dianhydride (BPDA) and pyromellitic dianhydride (PMDA). Most of fluorenyl cardo polyimides exhibited excellent solubility in common organic solvents such as m-cresol, chloroform, tetrahydrofuran (THF), N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAC) etc. and intrinsic viscosity in N,N-dimethylacetamide (DMAC) ranged from 0.31 to 0.92 dl/g. Tg of polyimides based on ODPA decrease with the number and size of alkyl substituents on fluorenyl cardo diamine. The results show that the incorporation of noncoplanar structure led by the introducing alkyl substituents on fluorenyl cardo diamines improves the solubility of cardo polyimides in organic solvents without sacrificing thermal properties.  相似文献   

12.
Thin films, in the range of tens of micrometers thickness, have been prepared by casting onto glass plates the chloroform or N‐methylpyrrolidone solutions of polyimides or poly(imide‐amide)s containing silicon and phenylquinoxaline units in the main chain. The polymers have been synthesized by solution polycondensation reaction of aromatic diamines having preformed phenylquinoxaline rings with bis(3,4‐dicarboxyphenyl)dimethylsilane dianhydride or with a diacid chloride resulting from the reaction of this dianhydride with p‐aminobenzoic acid. The polymers were easily soluble in polar aprotic solvents and showed high thermal stability. The free‐standing films exhibited good mechanical properties with tensile strengths in the range of 48–86 MPa, tensile modulus in the range of 1.25–2.22 GPa and elongation at break in the range of 3–37%. Electrical insulating properties of some polymer films were evaluated on the basis of dielectric constant and dielectric loss and their variation with frequency and temperature. The values of the dielectric constant at 10 kHz were in the range of 2.94–3.08 for polyimides and 3.89–4.49 for poly(imide‐amide)s. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3062–3068, 2006  相似文献   

13.
Two binary polyimide (PI) blends having a common monomer, diamine and dianhydride, were prepared. The first system was composed of PIs obtained from an alicyclic and flexible dianhydride, namely 5‐(2,5‐dioxotetrahydrofurfuryl)‐3‐methyl‐3‐cyclohexene‐1,2‐dicarboxylic acid anhydride (DOCDA) and two aromatic diamines, 4,4′‐oxydianiline (ODA) and p‐phenylenediamine (PPD), respectively. In the second system, ODA was combined with DOCDA and (hexafluoroisopropyldiene)diphtalic dianhydride (6FDA). Incorporation of aliphatic and asymmetric DOCDA moieties, hexafluoropropyldiene groups and ether linkages in the molecular structure of PI blends, poly(DOCDA/PPD)/poly(DOCDA‐ODA) and poly(6FDA‐ODA)/poly(DOCDA‐ODA) influenced the surface tension parameters, surface and interfacial free energy, and the work of spreading of water, maintaining the surface hydrophobic characteristics of both systems. In addition, it has been found out that surface hydrophobicity and surface roughness are properties that can be correlated with the red blood cells and platelets compatibility. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

14.
A series of novel homo‐ and copolyimides containing pyridine units were prepared from the heteroaromatic diamines, 2,5‐bis (4‐aminophenyl) pyridine and 2‐(4‐aminophenyl)‐5‐aminopyridine, with pyromelltic dianhydride (PMDA), and 3,3′, 4,4′‐biphenyl tertracarboxylic dianhydride (BPDA) via a conventional two‐step thermal imidizaton method. The poly(amic acid) precursors have inherent viscosities of 1.60–9.64 dL/g (c = 0.5 g/dL in DMAC, 30°C) and all of them can be cast and thermally converted into flexible and tough polyimide films. All of the polyimides show excellent thermal stability and mechanical properties. The polyimides have 10% weight loss temperature in the range of 548–598°C in air. The glass transition temperatures of the PMDA‐based samples are in the range of 395–438°C, while the BPDA‐based polyimides show two glass transition temperatures (Tg1 and Tg2), ranging from 268 to 353°C and from 395 to 418°C, respectively. The flexible films possess tensile modulus in the range of 3.42–6.39 GPa, strength in the range of 112–363 MPa and an elongation at break in the range of 1.2–69%. The strong reflection peaks in the wide‐angle X‐ray diffraction patterns indicate that the polyimides have a high packing density and crystallinity. The polymer films are insoluble in common organic solvents exhibiting high chemical resistance. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1844–1851, 2006  相似文献   

15.
A series of polyimides based on 4.,4′-isophthaloyldiphthalic anhydride (IDPA) was prepared and characterized by inherent viscosity, differential scanning calorimetry (DSC), solubility, wide-angle X-ray scattering (WAXS), and isothermal thermogravimetric analysis (ITGA). Film forming, tough, insoluble polyimides were obtained with most of the 11 diamines used for evaluation. Two materials were semicrystalline. Several compositions showed excellent thermooxidative stability by ITGA at 300 and 350°C in air, as compared to Kapton-H (Du Pont) film. The IDPA-m-phenylenediamine (m-PDA) composition, for example, gave a flexible, amorphous film having a Tg of 259°C (identical with LARC-TPI) and insoluble in a wide range of solvents. It is based on a potentially low-cost dianhydride (IDPA) and, unlike LARC-TPI, a low-cost, domestically available diamine which gives a negative Ames test.  相似文献   

16.
Summary A new dianhydride containing phenoxy groups and alicyclic unit was prepared by a bis-Diels-Alder reaction of 1,4-diphenoxy-2,3,5,6-tetrakis(bromomethyl)benzene with maleic anhydride, and polymerized with various aromatic diamines in one step at high temperature in NMP. All the polymers had good solubility toward polar solvents and their inherent viscosities were in the range of 0.31∼0.53dL/g. Polyimides properties were investigated and discussed in terms of the chain structures resulting from the incorporation of different diamines. All the polyimides were thermostable up to 475°C with 10% weight loss and in DSC thermograms the polymers exhibited T gs between 249 and 317°C. Received: 29 January 2001/Revised version: 25 April 2001/Accepted: 27 April 2001  相似文献   

17.
In this study, the alicyclic dianhydrides 1,2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA) was polymerized with seven kinds of fluorinated aromatic diamines, 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl (1), 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene (2), 1,4-bis(4-amino-2-trifluoromethylphenoxy)diphenyl (3), 1,4-bis(4-amino-2-trifluoromethylphenoxy) diphenyl ether (4), 2,2-bis[4-(4-amino-2-trifluoromethylphenoxy)phenyl]hexafluoropropane (5), 4,4′-bis(4-amino-2-trifluoromethylphenoxy)diphenyl sulfone (6), and 2,7-bis(4-amino-2-trifluoromethylphenoxy)naphthalene (7), via a two-step polycondensation procedure to prepare seven kinds of fluorinated semialicyclic polyimides (PI) PI-1 ∼ PI-7. The structures of these polyimides were confirmed by infrared spectroscopy (IR). Solubility of the polyimides was tested in various organic solvents and their thermal properties were investigated by dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA). Ultraviolet-visible spectra (UV-vis) and near infrared absorption spectra (NIR) were obtained to evaluate the optical properties of these polyimides. The obtained polyimides PI-1 ∼ PI-7 displayed excellent solubility in a variety of organic solvents; they were readily soluble in amide-type polar solvent. These polyimide films exhibited good optical transparency in the visible light region (400–700 nm) with the transmittance higher than 80% at 450 nm, and these polyimide films showed little absorption at the optocommunication wavelengths of 1.30 and 1.55 μm. These polyimides showed good thermal stability with the 10% thermal decomposing temperatures higher than 443°C in nitrogen and the glass transition temperatures higher than 265°C. In addition, the effect of the structure of fluorinated diamines on the properties of polyimide films was also compared. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
A series of new poly(ether-imide)s containing three-dimensional triptycene moieties were prepared from 1,4-bis(3,4-dicarboxyphenoxy)triptycene dianhydride with various aromatic diamines via a conventional two-stage process. The inherent viscosities of the amic acid prepolymers were in the range of 0.44~0.91 dL/g. Most of the resulting poly(ether-imide)s presented good solubility in many organic solvents and could be solution-cast into transparent and strong films. They also showed good thermal stability with glass-transition temperatures of 238~302 °C and 10% weight loss temperatures in excess of 572 °C. These triptycene-based poly(ether-imide)s showed enhanced optical transparency, decreased color intensity and lowered dielectric constants as compared to conventional aromatic polyimides. The poly(ether-imide)s derived from trifluoromethyl-containing bis(ether amine)s could afford highly optically transparent and almost colorless films.  相似文献   

19.
A series of homopolyimides and copolyimides was synthesized by the solution condensation of biphenyltetracarboxylic dianhydride (BPDA) isomers and various diamines followed by chemical imidization. These polyimides had intermediate to high molecular weights with inherent viscosities of 0.34–1.01 dL/g for homopolyimides and 0.48–1.02 dL/g for copolyimides. Thermogravimetric analysis indicated that the aromatic polyimides were stable up to 500°C, and the 5% weight loss temperatures were recorded in the range of 506–597°C in an air atmosphere and in the range of 517–601°C in a nitrogen atmosphere, depending on the diamines used. The glass transition temperatures of aromatic homopolyimides were above 271°C, while the glass transition temperatures of the copolyimides increased with an increase in the 2, 2′, 3, 3′‐BPDA‐component. The effects of the chemical structure of the polymer chain on the solubility were investigated. It was found that the solubility of BPDA‐based polyimides could be improved by the introduction of flexible units, nonlinear and non‐coplanar units, and copolymerization. The polyimides with nonlinear and non‐coplanar units derived from 2, 2′, 3, 3′‐BPDA appeared to have prominently enhanced solubility in polar aprotic solvents and polychlorocarbons when compared with the homopolyimide derived from 3, 3′, 4, 4′‐BPDA.  相似文献   

20.
Pyromellitic dianhydride‐based dianhydrides with bulky substituents, such as 1‐phenyl pyromellitic dianhydride and 1‐(4′‐trifluoromethylphenyl)pyromellitic dianhydride, were combined with bis(3‐aminophenyl)phenylphosphine oxide and 4,4′‐phenylene diamine to prepare polyimides with low coefficient of thermal expansion (~ 17 ppm/°C) and good adhesion (>100 g/mm). The polyimides were synthesized via a conventional two‐step process: preparation of poly(amic‐acid) followed by solution imidization with o‐dichlorobenzene. The molecular weights of the polyimides were controlled to 25,000 g/mol via off‐stoichiometry and the synthesized polyimides were characterized by Fourier transform infrared, nuclear magnetic resonance, differential scanning calorimetry, and thermogravimetric analysis. Their intrinsic viscosity and solubility were also measured, while adhesive property was measured via T‐peel test samples of Cu/polyimide. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号