首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The graft copolymerization of acrylamide (AAm) monomer onto polyethylene‐coated polypropylene (PE‐co‐PP) nonwoven fabric was carried out by the mutual irradiation method. The general peculiarities of the grafting have been studied by gravimetric, scanning electron microscope (SEM), mechanical properties, and Fourier transform infrared (FTIR) methods. The influence of absorbed dose, dose rate, as well as the monomer concentration on the degree of grafting has been determined. Metal ions uptake of Cu2+, Co2+, Ni2+ by the grafted fabrics was evaluated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3240–3245, 2006  相似文献   

2.
A mixture of acrylonitrile (AN) and itaconic acid (IA) was cografted onto polypropylene (PP) nonwoven fabrics by preirradiation method. The effects of graft polymerization conditions such as temperature, reaction time, Mohr's salt concentration, solvent mixture ratio, and comonomer composition on the total grafting yield were investigated. The addition of AN as a comonomer increased the amount of IA that reacted with PP fabrics. An increase in the temperature from 40 to 60°C increased the grafting rate, but the final grafting yield decreased at high temperature. The addition of 0.01 wt % Mohr's salt to the reaction medium leaded to a sharp increase of grafting yield. The accelerative effect of solvent medium on the grating yield was higher in dimethylformamide (DMF) and methanol mixtures, when compared with DMF or methanol. Chelating fabrics was synthesized by subsequent amination of grafted fabric with ethylene diamine (EDA) and phenylhydrazine (PH). The conversion yield reached maximum value at about 90% for 80% PP‐g‐AN‐IA fabrics at 90°C. At same amination conditions, the conversion yield is higher when PP‐g‐AN‐IA fabrics react with EDA compared with PH. FT‐IR data indicate that amine groups were introduced onto PP‐g‐AN‐IA fabric through amide linkage between grafted AN or IA and EDA or PH. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Carrier‐free dyeing of radiation‐grafted polyester fabrics with disperse red dye was studied in the temperature range 283–363 K. 1‐vinyl 2‐pyrrolidone (NVP), acrylic acid (AA) or their mixture was used to graft poly(ethylene terephthalate) (PET) fabric. The effects of pH of the dye solution, graft yield (GY), dyeing time (t), dye concentration (C), and dyeing temperature (T) on the colour difference (CD) of PET fabric were studied. The best dyeing condition was achieved at pH 5.5. CD increases linearly with the increase in GY, with slopes depending on the type of grafted copolymer. CD increased rapidly as the dyeing time increased; this was followed by a relatively slow dyeing rate within a few minutes. The initial dyeing rate (R) was found to increase with an increase in C and T. The dyeing rates for all grafted samples followed 0.35‐order kinetics and are temperature‐independent. Average activation energy 9.26 kJ mol?1 is calculated for the dyeing process and is independent of the fabric treatment. Pre‐exponential rate constants 1976, 1839, and 1579 (CD/GY) s?1 were calculated for dyeing PET samples grafted with AA/NVP mixture, NVP and AA, respectively, while 1074 CD s?1 was evaluated for carrier dyeing of ungrafted fabric. Analysis of the kinetic parameters and the dyeing mechanism revealed that dyeing PET fabric was diffusion‐controlled. Grafting PET fabric improved significantly the dyeing affinity of the DR dye over ungrafted samples dyed in solutions containing a carrier. Copyright © 2005 Society of Chemical Industry  相似文献   

4.
Acrylic acid (AA), acrylonitrile (AN), and acrylamide (AM) were grafted onto polyformaldehyde (PF) fibers employing γ-ray irradiation as well as benzoyl peroxide initiation. The nature of the graft copolymer obtained from a given monomer was dependent on the type of method used for the grafting reactions. This was reflected in the various characteristics of the grafted PF fibers such as moisture regain and dyeability to disperse, direct, basic, and acid dyes. The extent of grafting was dependent on time, concentration of the initiator, concentration of monomer, and irradiation dose. The grafting reaction with all the three monomers and both methods of grafting studied followed first-order kinetics. The rate constant values for grafting with AA, AN, and AM were 0.493, 0.576, and 0.420 hr?1, respectively for the irradiation method and 0.385, 0.385, and 0.346 hr?1, respectively, for the benzoyl peroxide initiation technique. The increase in the moisture regain was directly proportional to the amount of graft in the fiber. Acrylic acid grafted PF fibers were rendered hydrophilic to the highest extent (7.9% M.R. for 42% graft), while AM-grafted fibers were rendered so to the lowest extent (7.23% M.R. for 76.5% graft). Considerable improvement in dyeability of PF fibers was observed as a result of grafting. In general, dyeability was proportional to the amount of graft introduced in the fibers. The AA-grafted PF fibers gave a six-to sevenfold increase in disperse dye content when the irradiation method was followed and a four-to fivefold improvement when the chemical method was used during the grafting reaction. The AA-grafted and AM-grafted PF fibers show considerable affinity toward direct cotton dyes. The two substrates could also be dyed with fiber-reactive dyes in deep fast shades, the AM-grafted PF fibers giving deeper shades as a result of higher reactivity imparted to the substrate by the NH2 group of the graft copolymer. The AA- and AN-grafted PF fibers could be dyed in intense deep shades with cationic dyes. Similarly, AM-grafted substrates gave bright deep shades with acid dyes. Infrared studies, used to analyze the grafted PF fibers, indicated the presence of ? COOH, ? CN, and ? NH2 groups introduced in the fiber structure as a result of grafting with AA, AN, and AM.  相似文献   

5.
Radiation‐induced grafting of styrene onto poly(tetrafluoroethylene) (PTFE) films was studied by a simultaneous irradiation technique. Grafting was carried out using γ‐radiation from a 60Co source at dose rates of 1.32–15.0 kGy h−1 at room temperature. The effects of type of diluent, dose rate, irradiation dose, and the initial monomer concentration in the grafting solution on the degree of grafting were investigated. The degree of grafting was found to be strongly dependent upon the grafting conditions. The dependence of the initial rate of grafting on the dose rate and the initial monomer concentration in the grafting solution was found to be in the order of 0.6 and 1.7, respectively. The chemical structure and the crystallinity of the grafted PTFE films were studied by means of Fourier‐transform infrared, (FTIR), electron spectroscopy for chemical analysis (ESCA) and X‐ray diffractometry (XRD). © 2000 Society of Chemical Industry  相似文献   

6.
We investigated the chemically induced graft copolymerizations of acrylic acid (AA), acrylamide, crotonic acid, and itaconic acid (IA) onto cotton fibers. Benzoyl peroxide was used as an initiator. The effects of grafting temperature, grafting time, and monomer and initiator concentrations on the grafting yields were studied, and optimum grafting conditions were determined for the sample material. The maximum grafting yield value obtained was 23.8% for AA. Swelling tests, Fourier transform infrared spectroscopy, and scanning electron microscopy analyses of grafted and ungrafted fibers were also performed to characterize fiber properties. IA‐grafted fibers were measured as the most swollen fibers, with a swelling value of 510%. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2343–2347, 2006  相似文献   

7.
A novel Nylon‐6 fishnet fiber with the antiadhesion of seaweeds was prepared by UV radiation‐initiated grafting of acrylic acid (AA) onto Nylon‐6 fibers, and its structure was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The influences of grafting conditions, such as irradiation dose, temperature, concentration of monomer, inorganic acid, and inhibitor etc., on grafting rate were studied, and the antiadhesion of seaweeds was evaluated with Dunaliella. The results showed that the grafting amount of Nylon‐g‐AA was increased with the increase of irradiation time. With the increase of concentration of AA, temperature, reaction time, inorganic acid, and inhibitor, the grafting amount increased firstly and then decreased, respectively. Nylon‐6 fibers modified by Poly(acrylic acid) (PAA) had a strong effect on the adhesion of Dunaliella, and the antiadhesion was improved with the increase of the grafting amount. Results from the mechanical analysis revealed that the tensile strength of the UV‐irradiation fibers decreased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1252–1256, 2007  相似文献   

8.
We improved photoinduced graft polymerization by absorbing the monomer solution onto the substrate (Ab‐type) instead of immersing the substrate in the monomer solution (Im‐type) before photoirradiation to yield a more practical and effective grafting system. With this system, acrylic acid (AA) was effectively grafted onto polypropylene (PP) nonwoven fabric. The maximum degree of grafting obtainable was restricted by the amount of monomer preabsorbed onto the PP fabric. However, we effectively enhanced the degree of grafting by increasing the monomer concentration, adding trimethylolpropane triacrylate (TMPTA) to the monomer solution, and repeating the photoirradiation with supplementation of the monomer solution. The net availability of the monomer for graft polymerization was 50% or greater; this increased to 90% or greater with the addition of TMPTA and was much higher than for conventional Im‐type photografting (≤13%). Fourier transform infrared spectra, scanning electron microscopy morphology observations, and the adsorption–regeneration properties confirmed that the PP‐g‐AA fabric prepared by the improved Ab‐type photografting method had comparable qualities to those of fabric prepared by conventional Im‐type photografting. Thus, the improved Ab‐type photografting system provides potential for the preparation of graft adsorbents on a large scale at a competitive cost with a continuous reactor, such as a conveyer belt system, instead of a batch reactor. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
Radiation grafting of acrylic acid (AA)/N‐vinyl pyrrolidone (NVP) binary mixture onto poly(ethylene terephthalate) (PET) knittings was investigated by preirradiation technique. The influence of the grafting conditions, such as monomer composition, reaction temperature, and the effect of storage time with temperature after irradiation on the degree of grafting was determined. ATR‐FTIR spectroscopy analysis of the grafted knittings confirmed the existence of amide group of NVP in the knittings. The concentration of peroxides and effect of storage time on peroxide concentration were also determined by 2,2‐Diphenyl‐1‐picrylhydrazyl at different temperatures. There was an increase in surface roughness of grafted PET in comparison to virgin PET as determined by atomic force microscopy and scanning electron microscopy. The grafted knittings were subsequently immobilized with collagen Type I which was further apt for the study of growth and morphology of human mesenchymal stem cell (hMSC). The immobilization of collagen on PET knittings has provided an excellent surface for the growth of hMSCs. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
Graft polymerization and crosslinking in radiation processing are attractive techniques for modification of the chemical and physical properties of the conventional polymer. The graft polymerization and subsequent chemical treatment can introduce a chelate agent function into a conventional polymer such as cellulosic fabric. Cellulosic graft copolymers were prepared by the reaction of the fiber with acrylonitrile (AN) and 2‐acrylamido‐2‐methyl propane sulfonic acid (AMPS) in DMF initiated by γ‐radiation 60Co. The grafted fabric was chemically treated with hydroxyl amine to obtain amidoxime from. Factors affecting the grafting such as radiation dose, monomer concentration and solvent concentration as well as monomer composition was investigated. The chemically modified graft fabric was applied for recovery of cyanide and dichromate from aqueous solution. CN? shows 89% removal, whereas dichromate has 65% removal. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

11.
Photoinitiated surface grafting of acrylic acid (AA), acrylamide (AM) and 4-vinyl pyridine (VP) onto poly(ethylene terephthalate) (PET) fibers (a commercial textile yarn) has been studied using benzophenone (BP) as photoinitiator. A continuous process as previously described has been applied, which involves presoaking of the PET yarn in a solution of initiator and monomer in acetone and UV irradiation in nitrogen atmosphere. The resulting grafted polymer on the fiber surface has been analyzed by ESCA, titration of carboxy groups (grafted AA), and dye absorption. The relative ESCA intensities (RI) of O1s/C1s and N1s/C1s are used as measure for grafted AA, AM and VP, respectively, after recording the RI-values for ungrafted fibers. For grafting with AA, the RI-values increased from 32.8% (background) to 48.6% after 20 s irradiation time. The amount of carboxy groups measured by titration increased from 0.045 to 0.106 mmol/m2. Assuming an even coverage of grafted AA polymer, this means a grafted layer of 4.8 nm thickness. After grafting, the adsorption of the dye Crystal Violet (CV) from aqueous solution increased by about 3 times. With AM as monomer, the RI-values increased from 2.6 (background) to 14.8% and the adsorption of a direct dye Sirius Lichtbordo B-LL increased by about 6 times. With VP as grafted monomer, the RI-values increased from about 2.6 (background) to 5.1% and the adsorption of the direct dye increased by about 4 times.  相似文献   

12.
Modification of cotton fabric has been carried out through chemically induced graft copolymerization of binary mixture of acrylonitrile (AN) and 4‐vinyl pyridine (4‐VP) using ceric ammonium nitrate, (CAN) as initiator. Maximum percentage of grafting (151.28%) has been obtained at [4‐VP] = 0.376 mol L?1 and [AN] = 1.221 mol L?1, [CAN] = 0.0255 mol L?1 and [HNO3] = 0.9585 mol L?1 in 25mL of water at 70°C in 180 min. Post quarternization and phosphorylation reactions of the grey and grafted cotton fabrics have been carried out to study their antibacterial and flame retardant properties respectively. The fabrics have been characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The physico‐chemical properties such as wettability, moisture regain, crease recovery and tensile strength of the grey and grafted cotton fabric have also been evaluated. The modified fabric has been shown to exhibit excellent antibacterial and flame retarding properties with improved physico‐chemical properties except for the mechanical properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40415.  相似文献   

13.
Poly (ethylene terephtalate) (PET) nonwoven fabric was treated with He/O2 plasma to produce peroxides and grafted with acrylic acid (AA) for introducing carboxyl groups onto PET surface. The graft yield increased with AA concentration from 1.5M to 2.5M, and then decreased with further increase in AA concentration. Graft yield increased with sodium pyrosulfite (SPS) concentration from 0.005M to 0.02M, and then decreased with further increase of SPS concentration. X‐ray photoelectron spectroscopy results indicated that both of plasma treatment and AA grafting increased oxygen content and decreased carbon content on the PET nonwoven fabric surface. The grafted PET nonwoven fabric showed increase in moisture regain and dye uptake. And drastic increase in wettability was observed after grafting. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3655–3659, 2007  相似文献   

14.
A mixture of acrylamide (AAm) and itaconic acid (IA) was grafted onto poly(ethylene terephthalate) (PET) fibers with benzoyl peroxide in aqueous media. The effects of polymerization conditions such as the temperature, polymerization time, initiator concentration, and monomer mixture ratio on grafting were investigated. The maximum graft yield was 76.1% with an AAm/IA mixture ratio of 90/10 (mol/mol). The graft yield was as low as 3% in the single grafting of IA, whereas the use of AAm as a comonomer increased the amount of IA that entered the fiber structure to 33.5%. An increase in the temperature from 65 to 85°C increased the grafting rate and saturation graft yield. However, an increase in the temperature above 85°C decreased the saturation graft yield. The graft yield increased up to an initiator concentration of 1.0 × 10?2 M and decreased afterwards. The grafting rate was 0.65th‐ and 0.74th‐order with respect to the initiator and AAm concentrations, respectively. The densities, diameters, and moisture‐regain values of the AAm/IA‐grafted PET fibers increased with the graft yield. Similarly, there was an increase in the dyeability of the AAm/IA‐grafted fibers with acidic and basic dyes. The grafted fibers were characterized with Fourier transform infrared and thermogravimetric analysis, and their morphologies were examined with scanning electron microscopy. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1795–1803, 2005  相似文献   

15.
The radiation-induced grafting of 2N-morpholino ethyl methacrylate (MEMA) in aqueous solution onto polypropylene fabric by a preirradiation technique has been investigated. Among the most important factors affecting the graft yield are monomer concentration, irradiation dose, reaction temperature, and time. It was found that the graft yield increased with increasing monomer concentration, grafting temperature, and preirradiation dose. The kinetic studies showed that the dependence of the grafting rate on monomer concentration is of 1.1 order. Moreover, the calculated overall activation energy was 14.2 kcal/mol. The grafted PP fabric shows an increase in moisture regain with increasing graft yield. Also, the dyeability with acid dye was significantly increased due to grafting with MEMA. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
A novel amidoxime‐based silica adsorbent was prepared by using radiation‐induced grafting technique. Grafting of acrylonitrile (AN) on silanized silica that was silanized by vinyltriethoxysilane (VTES) was carried out in solvent‐free system. The grafting of AN was increased with increasing the absorbed dose and monomer concentration in the mixture. Grafting of 748% of AN was achieved at 20 kGy dose. The nitrile groups of acrylonitrile grafted silica (AN‐g‐S) were chemically converted into amidoxime groups. The structure of AN‐g‐S and its corresponding products was investigated by FTIR, SEM, TGA, BET, and XRD analysis. FTIR and EDX analysis confirmed the grafting of AN onto silica surface. The changed morphology of SEM images shows the presence polyacrylonitrile layers on silica particles. The adsorption application of amidoxime‐grafted silica (AO‐g‐S) was studied against Cu2+. Its adsorption capacity is strongly depended on the pH of the solution and 172 (mg/g) of Cu2+ uptake was obtained at pH 5.0. The developed adsorbent has potential application to remove heavy metal ions from aqueous solutions. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45437.  相似文献   

17.
Radiation‐induced grafting of binary mixtures of acrylonitrile (AN)/styrene (S) and acrylamide (AAm)/styrene (S) onto polyester fabric (PET) has been investigated. Synergism during radiation grafting was investigated by determining the graft yield fraction for each monomer in the final graft copolymer. Moreover, by knowing the mole fraction of each monomer in the grafting solution, the reactivity ratio of the individual monomers in the comonomer mixture during graft copolymerization could be determined: in the case of AN/S comonomer mixture, the calculated reactivity ratios for AN and S are 0.04 and 0.05, respectively; the calculated reactivity ratios of AAm and S in their comonomer mixture are 1.82 and 0.41, respectively. © 2001 Society of Chemical Industry  相似文献   

18.
The feasibility of a cellulose thiocarbonate–azobisisobutyronitrile (AIBN) initiation system to induce graft copolymerization of methyl methacrylate (MMA) and other acrylic monomers onto cotton fabric was investigated. Other acrylic monomers were acrylic acid, acrylonitrile, and methyl acrylate. The initiation system under investigation was highly activated in the presence of a metal‐ion reductant or a metal‐ion oxidant in the polymerization medium. A number of variables in the grafting reaction were studied, including AIBN concentration, pH of the polymerization medium, nature of substrate, monomer concentration, duration and temperature of polymerization, and composition of the solvent/water polymerization medium. The solvents used were methanol, isopropanol, 1,4‐dioxane, cyclohexane, benzene, dimethyl formamide, and dimethyl sulfoxide. There were optimal concentrations of AIBN (5 mmol/L), MMA (8%), Fe2+ (0.1 mmol/L), Mn2+ (8 mmol/L), and Fe3+ (2 mmol/L). A polymerization medium of pH 2 and temperature of 70°C constituted the optimal conditions for grafting. The methanol/water mixture constituted the most favorable reaction medium for grafting MMA onto cotton fabric by using the Fe2+–cellulose thiocarbonate–AIBN redox system. MMA was superior to other monomers for grafting. The unmodified cotton cellulose showed very little tendency to be grafted with MMA compared with the chemically modified cellulosic substrate. A tentative mechanism for the grafting reaction was proposed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1261–1274, 2004  相似文献   

19.
The simultaneous radiation grafting of styrene onto poly(tetrafluoroethylene‐co‐hexafluoropropylene) (FEP) films was studied at room temperature. The effects of grafting conditions (type of solvent, irradiation dose, dose rate, and monomer concentration) were investigated. The degree of grafting was found to be dependent on the investigated grafting conditions. The dependence of the initial rate of grafting on the dose rate and the monomer concentration was found to be of 0.5 and 1.3 orders, respectively. The results suggest that grafting proceeds by the so‐called front mechanism in which the grafting front starts at the surface of the film and moves internally toward the middle of the film by successive diffusion of styrene through the grafted layers. Some selected properties of the grafted films were evaluated in correlation with the degree of grafting. We found that the grafted FEP films possess good mechanical stability, which encourages their use for the preparation of proton exchange membranes. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 220–227, 2000  相似文献   

20.
Aromatic polysulfonamide fibers (PSA) are impossible to be dyed with conventional dyeing techniques because of their extremely high glass transition temperature (Tg 280~380 °C). To make the PSA fibers dyeable without a carrier under normal pressure, PSA fibers were grafted using γ‐ray irradiation with acrylic acid (AA) as a monomer. In addition to the dyeability, changes in other inherent performance characteristics of PSA fibers after irradiation grafting were evaluated, such as the mechanical behavior, thermal stability, hygroscopicity, and flame retardancy. Meanwhile, the effect of irradiation grafting on the performance of PSA fibers was revealed using structure information in different length scales. The results showed the AA‐grafting copolymerization occurred not only on the surface of PSA fibers, but also in the amorphous region within the fibers. The polyacrylic acid grafted chains could act as an internal plasticizer, enlarging the free volume of fibers, which make the PSA fibers dyeable with a cationic dye and disperse dye. The color fastness of the dyed PSA fibers was strongly reliant on the dye category. The irradiation‐grafting treatment has little adverse effect on the inherent performance of PSA fibers such as mechanical properties, thermal stability and flame retardancy within a proper grafting yield. POLYM. ENG. SCI., 59:592–601, 2019. © 2018 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号