首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
OBJECTIVE: The principal MRI features of hippocampal sclerosis are volume loss and increased T2 weighted signal intensity. Minor and localised abnormalities may be overlooked without careful quantitation. Hippocampal T2 relaxation time (HT2) can be quantified, but previously has only been measured on a few thick coronal slices with interslice gaps. In this study HT2 was measured along the entire length of the hippocampus on contiguous slices and used, with quantitative measures of hippocampal volume (HV) and distribution of atrophy, to better define the range of hippocampal sclerosis. METHODS: Thirty patients with temporal lobe epilepsy, 10 patients with extratemporal localisation related epilepsy and extratemporal lesions, and 20 control subjects were studied using MRI T2 relaxometry and volumetry. RESULTS: In controls and patients, HT2 was higher in the anterior than the posterior hippocampus. Using HV, morphometric, and HT2 data, patients with temporal lobe epilepsy were classified as unilateral diffuse hippocampal sclerosis (n=16), unilateral focal (n=6), bilaterally affected (n=6), and normal (n=2). In patients with unilateral hippocampal sclerosis, the anterior hippocampus was always affected. In three patients with normal HV, HT2 measurements disclosed unilateral focal abnormalities that corresponded to the EEG lateralisation of epileptic activity. Patients with bilateral hippocampal involvement had an earlier onset of epilepsy than patients with unilateral hippocampal sclerosis. CONCLUSIONS: Measurement of regional abnormalities of HT2 along the length of the hippocampus provides further refinement to the MRI assessment of the hippocampi in patients with temporal lobe epilepsy and is complementary to volumetric and morphological data.  相似文献   

2.
We performed interictal FDG-PET- and MRI-based hippocampal volumetric measurements on 18 adult patients with complex partial epilepsy of temporal lobe origin in whom we had identified their ictal focus by video-telemetry EEG. Sixteen patients (89%) had regional hypometabolism, 11 (61%) had focal 1.5-tesla T2-weighted MRI (two structural abnormalities, nine hippocampal formation [HF] increased T2 signal), and nine (50%) had absolute HF atrophy ipsilateral to the temporal ictal focus. Ten (55%) had abnormal L/R HF ratios, nine ipsilateral to the EEG focus. All patients with abnormal MRI volumetric studies had focal PET abnormalities. Only seven had both abnormal HF volume ratios and T2 MRI (all increased HF T2 signal). There was a significant correlation between hippocampal volume and inferior mesial and lateral temporal lobe cerebral metabolic rate of glucose asymmetry index (p < 0.01), suggesting that hypometabolism may reflect hippocampal atrophy. PET is more sensitive than MRI volumetry in identifying the ictal focus but does not provide additional information when HF atrophy is present.  相似文献   

3.
Patients with focal frontal, temporal lobe, or diencephalic lesions were investigated on measures of temporal (recency) and spatial (position) context memory, after manipulating exposure times to match recognition memory for targets (pictorial stimuli) as closely as possible. Patients with diencephalic lesions from an alcoholic Korsakoff syndrome showed significant impairment on the temporal context (recency) task, as did patients with frontal lesions penetrating the dorsolateral frontal cortex, according to MRI (and PET) evidence. Patients with temporal lobe lesions showed only a moderate (non-significant) impairment on this task, and patients with medial frontal lesions, or large frontal lesions not penetrating the dorsolateral cortical margins, performed as well as healthy controls at this task. On the spatial context memory task, patients with lesions in the temporal lobes showed significant impairment, and patients with right temporal lesions performed significantly worse than patients with left temporal lesions. Patients with diencephalic lesions showed only a modest (non-significant) impairment on this task, and the frontal lobe group performed normally. When a group of patients with temporal lobe lesions resulting from herpes encephalitis were examined separately, an identical pattern of results was obtained, the herpes group being significantly impaired on spatial memory and showing a trend towards impairment for temporal context memory. There were strong correlations between anterograde memory quotients and context memory performance (despite the use of an exposure time titration procedure) and a weak association in the frontal group with one frontal/executive task [corrected] (card-sorting perservations). It is predicted that correlations between temporal context memory and frontal/executive tasks will be greater in samples of patients all of whom have frontal lesions invading the dorsolateral cortical margin.  相似文献   

4.
Although clinical and electrophysiological evidence indicates that the amygdaloid body plays an important role in the pathogenesis of temporal lobe epilepsy, there are very few detailed data on histopathological changes in this nucleus in epilepsy patients. In the present study we have examined the lateral nucleus of the amygdaloid body in 70 surgical specimens from patients with temporal lobe epilepsy and in 10 control specimens with respect to neuronal density and gliosis. The results were compared to the neuronal loss in the hippocampal formation. Our goal was to examine the pathological alterations of the amygdaloid body and their correlation with other morphological changes in temporal lobe epilepsy. In epilepsy patients with Ammon's horn sclerosis or focal lesions of the temporal lobe, the neuronal density of the lateral amygdaloid nucleus was significantly decreased as compared to normal controls (P < 0.001). Overall, the mean volumetric density in epilepsy patients was reduced to 59% of that in normal individuals. There was no correlation between the neuronal density in the lateral amygdaloid nucleus and that in the different segments of the hippocampal formation or to the age at onset or the duration of epilepsy. The neuronal loss of the amygdaloid nucleus correlated well with the presence of fibrillary gliosis. Our findings demonstrate that the amygdaloid body is severely altered in most patients with temporal lobe epilepsy and that these changes are independent of those in the hippocampus. The presence of neuronal loss and gliosis in the amygdaloid nucleus of patients with focal lesions but no Ammon's horn sclerosis is compatible with an involvement of the amygdala in secondary epileptogenesis.  相似文献   

5.
As a group, epilepsies of frontal lobe origin are thought to be poorly localized using surface EEG recordings. This finding may depend on the specific areas of frontal lobe from which the seizures originate or the pathologic substrate. We reviewed the presurgical surface EEGs of patients with frontal lobe epilepsy who underwent epilepsy surgery. The specific area of the frontal lobe where seizures originated was determined by 1) intracranial ictal EEG recordings, or 2) the presence of a structural lesion, identified by imaging studies in patients who achieved complete seizure control following surgery. We differentiated patients whose seizures began in the dorsolateral frontal convexity from those whose seizures began in the medial frontal region, and we correlated EEG findings in the interictal, postictal, and ictal states with seizure semiology, pathologic substrate, and surgical outcome. Four of nine patients had seizures originating in the dorsolateral frontal convexity and five had medial frontal onset seizures. Patients whose seizures originated from the dorsolateral convexity had focal interictal epileptiform abnormalities that localized to the region of seizure onset. Patients whose seizures began in the medial frontal region had either no interictal epileptiform abnormality or had multifocal epileptiform discharges. Patients whose seizures began in the dorsolateral convexity showed focal electrographic seizure activity that was localizing. This rhythmic fast activity did not appear to be substrate-specific. Patients whose seizure onset localized to the medial frontal region did not show focal electrographic seizure at clinical onset. We conclude that the scalp EEG recordings of frontal lobe epilepsies contain features that enable differentiation of seizures originating from two different regions of the frontal lobe.  相似文献   

6.
PURPOSE: In adult studies, MRI volumetrics is a proven technique in presurgical assessment of epilepsy. Hippocampal volume loss is maximal in the syndrome of mesial temporal lobe epilepsy. We aimed (a) to validate this methodology in a pediatric outpatient epilepsy population (b) to determine the relationship of hippocampal asymmetry (HA) to epileptic syndromes and risk factors. METHODS: Two neurologists classified the epileptic syndrome in 79 pediatric outpatients, according to the International Classification of Epilepsies and Epileptic Syndromes (ILAE). Hippocampal volumetrics were performed in all patients. HA was defined according to adult control values. RESULTS: Inter-rater variability on measurement of HA was very small (Correlation of test retest of 0.97 on 17 children <3 years old). The rate of HA was 44/79 (57%). In 21 patients, (27%) potentially epileptogenic lesions (other than HA) were identified (cerebral dysgenesis n = 11). HA was present in 9/15 (60%) of temporal lobe epilepsy and in 15/28 (54%) extratemporal onset epilepsy and 5/11 (46%) of generalized symptomatic epilepsy. Analysis confined to <13 years also showed HA was not specific for epileptic syndrome. There was no significant association of febrile convulsions (13%) with HA or temporal lobe epilepsy. CONCLUSIONS: There is a high incidence of HA in childhood epilepsy. HA was not confined to clinically defined temporal lobe epilepsy. The poor correlation of epileptic syndrome to quantitative MRI findings may be due to the inadequacies of epilepsy classification in the younger child, with the clinical semiology providing misleading localizing information. Normative childhood data for hippocampal volumes and symmetry is needed.  相似文献   

7.
The goals of this study were to determine (1) the yield of magnetoencephalography (MEG) according to epilepsy type, (2) if MEG spike sources colocalize with focal epileptogenic pathology, and (3) if MEG can identify the epileptogenic zone when scalp ictal electroencephalogram (EEG) or magnetic resonance imaging (MRI) fail to localize it. Twenty-two patients with mesial temporal (10 patients), neocortical temporal (3 patients), and extratemporal lobe epilepsy (9 patients) were studied. A 37-channel biomagnetometer was used for simultaneously recording MEG with EEG. During the typical 2-3-hour MEG recording session, interictal epileptiform activity was observed in 16 of 22 patients. MEG localization yield was greater in patients with neocortical epilepsy (92%) than in those with mesial temporal lobe epilepsy (50%). In 5 of 6 patients with focal epileptogenic pathology, MEG spike sources were colocalized with the lesions. In 11 of 12 patients with nonlocalizing (ambiguous abnormalities or normal) MRI, MEG spike sources were localized in the region of the epileptogenic zone as ultimately defined by all clinical and EEG information (including intracranial EEG). In conclusion, MEG can reliably localize sources of spike discharges in patients with temporal and extratemporal lobe epilepsy. MEG sometimes provides noninvasive localization data that are not otherwise available with MRI or conventional scalp ictal EEG.  相似文献   

8.
OBJECTIVE: To examine the nature and frequency of anterior temporal lobe (AT) abnormalities that occur in intractable temporal lobe epilepsy (TLE). METHODS: We reviewed the MR scans and clinical histories of 50 consecutive patients with intractable TLE. Histopathology was available in 42 surgically treated cases. RESULTS: MRI demonstrated loss of the gray-white matter differentiation and decreased T1- and increased T2-weighted signal in the ipsilateral AT in 58% of the 50 patients. This appearance was observed in 64% of the 36 patients with hippocampal sclerosis (HS) but was also seen in patients without HS. These changes were associated with temporal lobe atrophy, a higher hippocampal T2 relaxation time, and a history of febrile convulsions. Pathologic examination showed that the MRI appearances were not caused by dysplasia, degenerative abnormalities, or inflammatory change. Histologic quantitation showed increased glial cell nuclei counts in the intractable TLE cases compared with controls. There was no difference in glial cell numbers between cases with AT abnormality and those without this appearance. Presence or absence of changes was not predictive of preoperative neuropsychology, postoperative change in neuropsychology, or seizure outcome after surgery. CONCLUSIONS: These frequently seen ipsilateral changes are not caused by gliosis and may reflect a nonspecific increase in water content in the temporal lobe. This may be due to myelin abnormalities or some other as yet unidentified pathologic factor.  相似文献   

9.
PURPOSE: Arachnoid cysts are sometimes encountered in MRIs performed for a variety of reasons. In patients with epilepsy, particularly those with refractory epilepsy, arachnoid cysts are often assumed to be related to their seizure focus. We conducted a study to investigate this putative relationship. METHODS: A retrospective study on the incidence of arachnoid cysts was performed in patients seen in our Epilepsy Clinic who had CT or MRI scans, interictal EEGs or ictal EEGS. Locations of seizure foci in these patients were defined from clinical and electrophysiologic data. RESULTS: Seventeen of 867 patients had arachnoid cysts. Twelve patients had temporal lobe cysts and only 3 of them had temporal lobe seizures. Four patients had frontal lobe cysts and only 1 had frontal lobe seizures ipsilateral to the cyst. One patient had a cerebello-pontine angle cyst and frontal lobe seizures. Thus, clinical manifestations of seizures and EEG findings (interictal and/or ictal) indicated that the seizure focus was adjacent to the cysts in only 4 patients (23.5%). CONCLUSIONS: Our findings suggest that arachnoid cysts are often an incidental finding in patients with epilepsy and do not necessarily reflect the location of the seizure focus.  相似文献   

10.
PURPOSE: The role of quantitative magnetic resonance imaging (MRI) in evaluation of childhood epilepsy remains poorly defined, with minimal published data. Previous work from our center questioned the specificity of hippocampal asymmetry (HA) in an outpatient group whose epilepsy was defined by using clinical and interictal data only. By using childhood volunteer controls and defining epilepsy syndromes using video-EEG monitoring, we readdressed the utility of HA in differentiating mesial temporal lobe epilepsy (MTLE) from other partial and generalized epileptic syndromes in children. METHODS: Seventy children were enrolled; entry criteria were age younger than 18 years with predominant seizure type recorded on video-EEG telemetry with volumetric MRI in all cases. Thirty healthy child volunteers had volumetric MRI. Epilepsy syndrome classification was according to ILAE. RESULTS: Control data revealed symmetric hippocampi, mean smaller/larger ratio of 0.96 (0.95-0.97, 95% CI) with no gender or right/left predominance. Overall 23% of patients had significant HA. Mean hippocampal ratio for MTLE was 0.78 (95% CI, 0.70-0.86), significantly lower than controls and from all other epilepsy syndromes. HA was highly specific (85%) to the syndrome of MTLE. Other potential epileptogenic lesions were found in 27 (39%) patients, lowest yield in frontal and mesial temporal syndromes. Dual pathology was present in 10% of patients. There was no significant association between HA and risk factors. CONCLUSIONS: In this study, we found that HA in children with a well-defined epilepsy syndrome is highly sensitive and specific for MTLE. Whether this will correlate with surgical outcome, as in adults, is the subject of ongoing study.  相似文献   

11.
Epileptic seizures are followed by dynamic alterations in neurologic function in the postictal period which have received little attention by clinicians over a long period of time. We therefore retrospectively studied videotapes of 160 patients with focal epilepsy who underwent presurgical evaluation, for the occurrence of postictal symptoms to determine whether these phenomena have any localizing or lateralizing value in defining the seizure onset zone. Results: (1) We found postictal paresis in 22 of 160 patients (18.8%) in each case contralateral to the hemisphere of seizure onset. (2) 'Perservative' automatisms which start during the ictus and continue in the postictal period occurred in 25.2% of 135 patients with temporal lobe epilepsy but not in patients with frontal lobe epilepsy. (3) Sexual automatisms defined as manipulations of the genitals were found exclusively in patients with temporal lobe epilepsy (in 5.9% of 135 patients). (4) Postictal 'Nose-wiping' was evident in 51.3% of 76 temporal lobe epilepsy patients but only in 12.0% of 25 extratemporal lobe epilepsy patients and was performed with the hand ipsilateral to the hemisphere of seizure onset in 86.5% of all temporal lobe seizures. (5) Postictal language disturbances were observed only in patients with temporal lobe epilepsy (34% of 97 patients) and pointed to a seizure onset in the dominant hemisphere in 80.8%. We conclude that postictal phenomena can provide reliable information for the localization of the seizure onset zone in patients with complex partial seizures. Thus, more attention should be given to the postictal state during presurgical epilepsy monitoring.  相似文献   

12.
Because interictal temporal lobe delta activity (TLDA) has been described in 30 to 90% of patients with temporal lobe epilepsy (TLE) but has not been investigated in patients with extratemporal epilepsy, we sought to determine the localizing significance of TLDA. We compared the presurgical interictal scalp EEG results of 47 consecutive patients who received extratemporal resection (40 frontal and 7 parietal-occipital) for intractable epilepsy with 43 consecutive patients who received anterior temporal lobectomy. We defined lateralized TLDA as runs of lower than 4-Hz waveforms that were easily distinguished from the background rhythms and were maximal at electrodes T4, F8, and T6 or T3, F7, and T5. The lateralized TLDA was subcategorized as temporal intermittent rhythmic delta activity (TIRDA) or temporal intermittent polymorphic delta activity (TIPDA). A chi-square test was used to determine the association of the lobe of the epileptogenic zone with TIRDA and TIPDA. We found TIRDA in 12 (28%) and TIPDA in 8 (19%) patients in the temporal lobe group, and TIRDA in 2 (4%) and TIPDA in 9 (19%) patients in the extratemporal group. TIRDA was strongly associated with TLE (p < 0.003), whereas TIPDA occurred at an equal rate in both groups. Similar to anterior temporal epilepsy, lateralized TIPDA is present in up to 20% of patients with extratemporal epilepsy. The presence of TIRDA strongly suggests TLE but may infrequently occur in extratemporal epilepsy. Caution should be used when using lateralized TLDA as a presurgical localizing finding.  相似文献   

13.
Studies dating back more than 150 years reported a relationship between hippocampal sclerosis and epilepsy. Retrospective studies of patients who underwent temporal lobectomy for intractable partial epilepsy found a relationship between a history of early childhood convulsions, hippocampal sclerosis, and the development of temporal lobe epilepsy. Many believe that febrile seizures lead to hippocampal damage and this in turn predisposes the patient to the development of temporal lobe epilepsy. Studies in adult rats have shown that seizures can lead to hippocampal damage and unprovoked recurrent seizures. However, many questions remain as to the relevance of early childhood seizures to hippocampal sclerosis and temporal lobe epilepsy. Human prospective epidemiologic studies have not shown a relationship between early childhood seizures and temporal lobe epilepsy. Recent MRI studies in humans suggest that a preexisting hippocampal lesion may predispose infants to experience febrile seizures, later on hippocampal sclerosis, and possibly temporal lobe epilepsy may occur. Unlike the studies in adult rats, normal immature rats with seizures have not been shown to develop hippocampal damage or unprovoked seizures in adulthood. Furthermore, animal studies reveal that preexisting brain abnormalities can predispose to hippocampal damage following seizures early in life. This paper reviews evidence for and against the view that early childhood convulsions, hippocampal sclerosis, and temporal lobe epilepsy are related, while also exploring clinical and animal studies on how seizures can lead to hippocampal damage, and how this can result in temporal lobe epilepsy. By better understanding the cause and effect relationship between early childhood seizures and hippocampal injury in normal and abnormal brains specific treatments can be developed that target the pathogenesis of epilepsy.  相似文献   

14.
There is now a consensus that magnetic resonance imaging (MRI) is a sensitive and specific indicator of mesial temporal sclerosis (MTS) in patients with partial epilepsy. MTS is the most common pathological finding underlying the epileptogenic zone in patients undergoing temporal lobe surgery for medically refractory partial seizures. MRI-based hippocampal volumetric studies (i.e., quantitative MRI), has been shown to provide objective evidence for hippocampal atrophy in patients with MTS. The hippocampal volume in the epileptic temporal lobe has correlated with the neuronal cell densities in selected hippocampal subfields. A history of febrile seizures in childhood and age of unprovoked seizure onset have been associated with MRI-based hippocampal volumetry. There is conflicting evidence regarding the relationship between the duration of the seizure disorder and volumetry. Quantitative MRI has compared favorably to other noninvasive techniques (e.g., scalp-recorded EEG), in indicating the diagnosis of medical temporal lobe epilepsy (MTLE). MRI-identified hippocampal atrophy has also been a favorable prognostic indicator of seizure outcome after temporal lobe surgery. The presence of hippocampal atrophy appears to serve an in vivo surrogate for the presence of MTS.  相似文献   

15.
We describe a new syndrome of familial temporal lobe epilepsy in 38 individuals from 13 unrelated white families. The disorder was first identified in 5 concordant monozygotic twin pairs as part of a large-scale twin study of epilepsy. When idiopathic partial epilepsy syndromes were excluded, the 5 pairs accounted for 23% of monozygotic pairs with partial epilepsies, and 38% of monozygotic pairs with partial epilepsy and no known etiology. Seizure onset for twin and nontwin subjects usually occurred during adolescence or early adult life. Seizure types were simple partial seizures with psychic or autonomic symptoms, infrequent complex partial seizures, and rare secondarily generalized seizures. Electroencephalograms revealed sparse focal temporal interictal epileptiform discharges in 22% of subjects. Magnetic resonance images appeared normal. Nine affected family members (24%) had not been diagnosed prior to the study. Pedigree analysis suggested autosomal dominant inheritance with age-dependent penetrance. The estimated segregation ratio was 0.3, indicating an overall penetrance of 60% assuming autosomal dominant inheritance. The mild and often subtle nature of the symptoms in some family members may account for lack of prior recognition of this common familial partial epilepsy. This disorder has similarities to the El mouse, a genetic model of temporal lobe epilepsy with a major gene on mouse chromosome 9, which is homologous with a region on human chromosome 3.  相似文献   

16.
PURPOSE: In patients with refractory temporal lobe epilepsy, studies have suggested volume deficits measured by MRI of brain structures outside the epileptogenic hippocampus. Hippocampal sclerosis (HS) is a frequent, but not obligate, finding in such patients. The present study examines the influence of the presence of HS on quantitative magnetic resonance imaging (MRI) measurements. METHODS: We analyzed 47 patients and 30 controls by quantitative MRI, including intracranial volume (ICV), hemicranial volume, hippocampal volume (HCV), and T2 relaxometry. MRI results were compared with histological findings in the resected temporal lobe. RESULTS: Histology documented HS in 35 patients (HS group) and other findings in 12 patients (no-HS group). In both groups, the hemicranial volume ipsilateral to the epileptogenic focus was significantly smaller than on the contralateral side (p < 0.004). The HCV on both sides was smaller in the HS group compared with patients without HS (p < or = 0.004). Unilateral hippocampal atrophy and increased T2 value were found in 71% of patients with HS, and bilaterally normal HCV and T2 value were found in 67% of patients without HS. CONCLUSIONS: The smaller hemicranial volume on the focus side, irrespective of the presence or absence of HS suggests a different pathogenic mechanism for the additional hemicranial volume deficit, compared to HS itself. The contralateral HCV deficit depends on the presence of HS, indicating a pathogenic connection between damage to both hippocampi.  相似文献   

17.
The non-convulsive status epilepticus (NCSE) is a complication of petit mal epilepsy or epilepsy with temporal lobe seizures. Very rarely it is the primary manifestation of a symptomatic epilepsy. This report is on a 30-year old female inpatient with NCSE as the primary manifestation of symptomatic epilepsy, occurring four years after HIV infection (stage B3 according to the CDC classification) through heterosexual contact. After an initial tonic-clonic seizure, the patient suffered from NCSE for four weeks with diminished consciousness and major cognitive deficits. During this whole time period the EEG showed bilateral synchrone 1-2 Hz spike-wave complexes. After several failed treatment attempts, the NCSE was successfully and permanently treated with a combination of valproic acid and ethosuximide. The cerebrospinal fluid, cranial CT and cranial MRI were completely uneventful with regard to a CNS infection by the HI-virus or other infectious agents. 20 days after the initial symptoms, MRI showed bilateral cortical-subcortical and bilateral hippocampal lesions which stood out as focal edema zones, gradually disappeared completely and occurred in combination with the development of a discrete brain and right sided hippocampal atrophy. The EEG continued to show signs of right-temporal epileptic discharges with tendencies to generalise after 3 months but normalised after 6 months. Epileptic seizures are rarely an initial clinical sign of an infection with the HI-Virus even if no signs of encephalitis is detectable in the cerebrospinal fluid or in the cerebral MRI.  相似文献   

18.
Patients with medically intractable epilepsy and either hippocampal sclerosis or frontal lobe lesions were compared with healthy controls, to investigate a possible neuroanatomical correlate of a component of working memory: the central executive. Patients were tested on a short-term memory task which comprised visuo-spatial and verbal components, in single and concurrent trials. Differences were found between the patient groups for dual-task capacity, despite being equated on single-task trials. Patients with frontal lobe damage were the most affected by the demands of attention division. The results of this study do not support the thesis of a hippocampal role in the working memory component examined, but point to a frontal lobe focus for this janusian cognitive function. An unexpected finding of an increment in performance over the trials of visuo-spatial assessment, in patients with hippocampal sclerosis, is presented.  相似文献   

19.
The neuropsychological characteristics of frontal lobe epilepsy have rarely been reported, with neuropsychological indicators usually being related to subjects with other forms of neurological damage. In this study we assessed the performance of 74 subjects with frontal lobe epilepsy (42 with left, 32 with right frontal epileptic foci) on a series of measures thought to be sensitive to frontal lobe dysfunction and compared to 57 subjects with temporal lobe epilepsy (31 with left, 26 with right epileptic foci). The results indicated a number of measures that could be considered sensitive to frontal lobe epileptic dysfunction. However, the pattern of results did not indicate consistent deficits to be associated with frontal lobe epileptic dysfunction. There are a number of unique factors associated with epilepsy that need to be considered, and these may account for the variable pattern of results obtained. In particular, the rapid propagation of frontal lobe seizures both bilaterally and to other cortical regions has to be considered.  相似文献   

20.
PURPOSE: To use quantitative magnetic resonance imaging (MRI) methods to examine the extent of volume abnormalities in the hippocampus and in extrahippocampal brain regions in localization-related epilepsy of temporal lobe origin (TLE). METHODS: Hippocampal, temporal lobe, and extratemporal lobe volumes were examined with 3-mm spin-echo coronal MRI scans in patients with unilateral TLE who were candidates for temporal lobe resection. Measures were adjusted for normal variation due to intracranial volume and age based on 72 healthy male controls. Group differences between 14 male TLE [7 left TLE (LTLE), 7 right TLE (RTLE)] patients and a subset of 49 age range-matched controls were examined with analysis of variance (ANOVA). RESULTS: As compared with controls, patients with TLE had smaller temporal lobe and frontoparietal region gray matter volumes, bilaterally, smaller temporal lobe white matter volumes bilaterally, and larger ventricular volumes. In contrast to these bilateral tissue volume deficits, hippocampal volume deficits in TLE were ipsilateral to the epileptogenic temporal lobe. CONCLUSIONS: Extrahippocampal volume abnormalities were bilateral and occurred in both temporal and extra-temporal cortical regions in TLE, whereas hippocampal deficits were related to the side of the epileptogenic focus. These data suggest that brain abnormalities in TLE are not limited to the epileptogenic region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号