首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The new reactor concept for highly endothermic reactions at elevated temperatures with possible rapid catalyst deactivation based on the indirect coupling of endothermic and exothermic reactions in reverse flow, developed for irreversible reactions in Part I, has been extended to reversible endothermic reactions for the sequential reactor configuration. In the sequential reactor configuration, the endothermic and exothermic reactants are fed discontinuously and sequentially to the same catalyst bed, which acts as an energy repository delivering energy during the endothermic reaction phase and storing energy during the consecutive exothermic reaction phase. The periodic flow reversals to incorporate recuperative heat exchange result in low temperatures at both reactor ends, while high temperatures prevail in the centre of the reactor. For reversible endothermic reactions, these low exit temperatures can shift the equilibrium back towards the reactants side, causing ‘back-conversion’ at the reactor outlet.The extent of back-conversion is investigated for the propane dehydrogenation/methane combustion reaction system, considering a worst case scenario for the kinetics by assuming that the propylene hydrogenation reaction rate at low temperatures is only limited by mass transfer. It is shown for this reaction system that full equilibrium conversion of the endothermic reactants cannot be combined with recuperative heat exchange, if the reactor is filled entirely with active catalyst. Inactive sections installed at the reactor ends can reduce this back-conversion, but cannot completely prevent it. Furthermore, undesired high temperature peaks can be formed at the transition point between the inactive and active sections, exceeding the maximum allowable temperature (at least for the relatively fast combustion reactions).A new solution is introduced to achieve both full equilibrium conversion and recuperative heat exchange while simultaneously avoiding too high temperatures, even for the worst case scenario of very fast propylene hydrogenation and fuel combustion reaction rates. The proposed solution utilises the movement of the temperature fronts in the sequential reactor configuration and employs less active sections installed at either end of the active catalyst bed and completely inactive sections at the reactor ends, whereas propane combustion is used for energy supply. Finally, it is shown that the plateau temperature can be effectively controlled by simultaneous combustion of propane and methane during the exothermic reaction phase.  相似文献   

2.
Multifunctional autothermal reactors are a novel concept in process integration and intensification. They can be implemented as a countercurrent or reverse-flow reactor. A promising field of application is the coupling of endothermic and exothermic reactions. Methane steam reforming coupled with methane combustion is considered as a particular example. Several novel reactor configurations with co- and countercurrent flow in the reaction zone will be discussed by numerical simulation and an example for experimental verification will be presented.  相似文献   

3.
利用计算化学工程方法,针对甲烷催化燃烧和甲烷水蒸气重整的模型反应体系,研究了一种结构较复杂的金属基整体式催化反应器用于吸/放热反应耦合时的性能.模拟结果表明,这种金属基整体式催化反应器应用于吸/放热反应耦合具有很大的研发潜力.初步分析了操作参数的影响,重整侧与燃烧侧入口气体速度的比值、气体入口温度以及燃烧部分和重整部分的甲烷体积流量比都是影响反应器性能的重要因素.  相似文献   

4.
This work is focused on the application of reverse flow reactors to the combustion of lean mixtures of aliphatic and aromatic hydrocarbons in air. For this purpose, hexane and toluene were chosen as model compounds. The combustion of binary mixtures of these compounds (up to 500 ppmV total hydrocarbon concentration) over a commercial Pt/Al2O3 catalyst in reverse flow reactors has been studied both experimentally, in a bench-scale unit, and by simulations, using a heterogeneous mono-dimensional dynamic model, good correspondence being observed between both approaches.As general trend, it was observed that the behaviour of the reactor is determined mainly by the combustion enthalpies and reactivities of toluene and hexane. Hence, increasing total concentration and increasing fraction of toluene (the most reactive compound) lead to more stable operation. Regarding the kinetic inhibition effects, in the conditions studied no influence on the reactor performance was observed, probably because the hydrocarbons combust in different reactor zones. This behaviour can be extended to the combustion of aromatic and C5-C8 alkanes, characterised by their relatively low concentrations (determined by their vapour pressure) and high reaction rates.  相似文献   

5.
By combining endothermic and exothermic reactions in one reactor, a mutual utilization of thermal energy involved in reactions is expected to produce a saving energy and a cost-down for running in industrial reaction process. In this case, a wall-type reaction system is thought to be suitable because such reaction system is good at exchangeability of thermal energy by conductive heat transfer. This study supposed a wall-type reaction system consisting of endothermic and exothermic reaction channels stacked up and a fixed-bed reaction system of the same configuration, and compared them by numerical simulation in the case where endothermic and exothermic reactions progress simultaneously.

In the fixed-bed reaction system, heat transfer in the catalyst bed takes place by convection, and this transfer becomes the rate-limiting process. Accordingly, occurrence of hot spot in the exothermic channel and shortage of thermal energy in the endothermic channel were predicted. This trend became distinct by making the feed gas directions flowing in the two channels countercurrent and by stacking the channels in multiple tiers. In the wall-type reaction system, however, the temperature distributions in the exothermic and endothermic channels almost conformed to the set temperatures, and the temperature difference between channels was small. Even if the feed gases flowed in countercurrent and even if the channels were stacked several deep, this trend did not change. In the wall-type reaction system, the exchange of thermal energy would take place efficiently by conductive heat transfer between the endothermic and exothermic channels. Furthermore, it was inferred that the wall-type reaction system would provide a stable operation in mutual utilization of thermal energy.  相似文献   


6.
7.
A novel tubular flow reactor where a straight tube is modified by pinching it periodically at a fixed pitch and at different angles is presented. Pinched tubes (straight tube as well as helical coils) with different pitch and angles between successive pinching are studied. This work reports a detailed hydrodynamic study involving single and two‐phase flow. Mixing experiments showed that having an angle of 90° between successive pinchs achieves the shortest mixing length when compared to lower angles. Pressure recovery along with sequence of high and low shear zones and change of flow direction imposed better mixing. Residence time distribution studies showed that higher number of pinch sections decreases the extent of dispersion, yet it deviates from plug flow. The performance is evaluated by carrying a homogeneous and two‐phase aromatic nitration and also liquid‐liquid extraction. Pinched tube presents an economical option as a flow reactor for conducting exothermic reactions. © 2016 American Institute of Chemical Engineers AIChE J, 63: 358–365, 2017  相似文献   

8.
A staged linear model, containing five parameters, is developed to compare equivalent simulated moving bed chromatographic reactors (SMBCR) and reverse flow chromatographic reactors (RFCR). A first order reversible reaction and linear adsorption equilibrium, with preferential adsorption of the reactant is assumed. The analysis uses simple, easily computable analytical solutions that rigorously represents the transients in the cyclic steady state for both the RFCR and the SMBR. A comparison between the two types of reactors is carried out to determine the maximum conversion attainable and the range of operation where these systems have advantages over conventional steady state reactors. It is found that the maximum conversion of both reactors is similar. The range of operation in terms of amount of catalyst and range of switching times favors the RFCR, while the conversion at low separation factors favors the SMBCR.  相似文献   

9.
An LaFe0.5Mg0.5O3/Al2O3/FeCrAl metallic monolith catalyst for the exothermic catalytic combustion of methane and an Ni/SBA-15/Al2O3/FeCrAl metallic monolith catalyst for the endothermic reforming of methane with CO2 have been prepared. A laboratory-scale tubular jacket reactor with the Ni/SBA-15/Al2O3/FeCrAl catalyst packed into its outer jacket and the LaFe0.5Mg0.5O3/Al2O3/FeCrAl catalyst packed into its inner tube was devised and constructed. The reactor allows a coupling of the exothermic and endothermic reactions by virtue of their thermal matching. An experimental study in which the temperature difference between the chamber of the external electric furnace and the metallic monolith catalyst bed in the jacket was kept very small, by adjusting the power supply to the furnace, confirmed that the heat absorbed in the reforming reaction does indeed partly come from that evolved in the catalytic combustion of methane, and that the direct thermal coupling of the two reactions in the reactor can be realized in practice. When the temperature of the electric furnace chamber was 1088 K, and the gas hourly space velocities (GHSVs) of the reactant mixtures passed through the inner tube and the jacket were 382 h−1 and 40 h−1, respectively, the conversions of methane and CO2 in the reforming reaction were 93.6% and 91.7%, respectively, and the heat efficiency reached 81.9%. Stability tests showed that neither catalyst underwent deactivation during 150 h on stream.  相似文献   

10.
The maximally attainable productivity of perforated monolithic bed reactors has been compared to that of the traditional packed bed of spheres for the case of laminar flow conditions and first-order isothermal reaction kinetics. Using the E number established in Part I, it could be shown in a very condensed, yet fully quantitative way that the maximal gain in total reactor productivity which can be obtained by switching from the tortuous pore system of the packed bed of spheres (large flow resistance) to the straight-running flow-through pores of a perforated monolithic bed (minimal flow resistance) typically is 25-40%. Much larger gains in total productivity can be obtained by using highly open-porous beds. Whether this high porosity is achieved using a perforated monolithic bed, a packed bed of hollow extrudates or a structured fibre-mesh bed is then only of secondary importance. The E number also allows to quantify the potential gain and the range of applicability of the more advanced reactor designs proposed in the past years (e.g., the parallel passage reactor). It could now be shown that the productivity gain of these advanced concepts can even amount up to a factor of 100. As these gains are to be realized in beds with ultra-small flow-through pores, the present study also provides a strong quantitative argument for the current research on (micro-)structured reactor beds.  相似文献   

11.
A laboratory module for senior-level reaction engineering/reactor design students is described. Students use low-conversion experimental data to explore and characterize the kinetics of ammonia decomposition over various supported catalysts at atmospheric pressure in a packed-bed reactor. Each student team is assigned one of four catalyst types, a reactor temperature, and a series of feed flow rates and compositions. Aggregate data from all student groups is then summarily analyzed per catalyst type. In each experimental trial, the reactor conversion is determined by a thermal conductivity measurement applied to the feed (reactor bypass) and reactor effluent gases. An analysis of the reaction rate across a range of temperatures and varying feed gas partial pressures allows students to test various reaction mechanisms, to suggest rate-determining steps, and to statistically determine rate law parameters. Students typically use the Langmuir–Hinshelwood–Hougen–Watson (LHHW) approach to derive rate law expressions, and determine rate constants through application of the Arrhenius equation. High student numbers (ca. 140) are accommodated through the availability of four experimental stations — each sharing a common source of feed gas and equipped with independent flow controllers and gas analyzers.  相似文献   

12.
In the first paper of this series, it has been demonstrated that the capital investment and operating cost can frequently be reduced substantially through seeking further internal heat integration between the reaction operation and separation operation for a reactive distillation column involving reactions with highly thermal effect. In this paper, the dynamics and operation of the resultant reactive distillation system is to be examined, with special emphasis focused on the dynamic effect of the supplementary internal heat integration. It has been found that seeking further internal heat integration can sometimes improve process dynamics and lessen difficulties in process operation. This outcome stems from the refined relationship between the reaction operation and separation operation involved and is of great significance in tightening process design for a reactive distillation column containing reactions with highly thermal effect.It should, however, be pointed out that seeking further internal heat integration might also confine severely the flexibility of the resultant reactive distillation column due to the reduction of mass transfer driving forces. When encountering a sharp increase in the product specification that is more relevant to the supplementary internal heat integration, the process might show deteriorated dynamic performance and can even converge to an undesirable steady state where the economical advantages of the supplementary internal heat integration are lost totally. Therefore, some effective measures to increase the redundancy of the resultant process design have to be taken to deal with the side-effect during process development.  相似文献   

13.
In the Eulerian approach to model gas-solid fluidized beds closures are required for the internal momentum transfer in the particulate phase. Firstly, two closure models, one semi-empirical model assuming a constant viscosity of the solid phase (CVM) and a second model based on the kinetic theory of granular flow (KTGF), have been compared in this part in their performance to describe bubble formation at a single orifice and the time-averaged porosity profiles in the bed using experimental data obtained for a pseudo two-dimensional fluidized bed operated with a jet in the center. Numerical simulations have shown that bubble growth at a nozzle with a jet is mainly determined by the drag experienced by the gas percolating through the compaction region around the bubble interface, which is not much influenced by particle-particle interactions, so that the KTGF and CVM give very similar predictions. However, this KTGF model does not account for the long term and multi particle-particle contacts (frictional stresses) and under-predicts the solid phase viscosity at the wall as well as around the bubble and therefore over-predicts the bed expansion. Therefore, in the later part of the paper, the bubble growth at a single orifice and the time-averaged porosity distribution in the bed predicted by the KTGF model with and without frictional stresses are compared with experimental data. The model predictions by the KTGF are improved significantly by the incorporation of frictional stresses, which are however strongly influenced by the empirical parameters in this model. In Part II the comparison of the CVM and KTGF with experimental results is extended to freely bubbling fluidized beds.  相似文献   

14.
A global optimization analysis of a general class of perforated monolithic bed reactors is presented for the case of an isothermal first-order reaction and for laminar flow conditions. The resulting design rules indicate how a given amount of catalyst material should best be perforated or distributed in space as a function of the available inlet pressure. It is shown that the influence of the different process variables (kP,Vcata,Cin/Cout,Dmol, Sreac) on the reactor productivity and on the optimal bed design can be grouped into a single dimensionless number E. This number also allows to discuss the sensitive relation between the total and the volumetric productivity of single bed reactors in a very general, compact manner. Two different perforated monolithic bed designs, a slit pore bed (SPB) and a cylindrical pore bed (CPB) are considered. It is found that, when there is an excess inlet pressure (i.e., for E?1), the optimal catalyst layer thickness is given by φ=0.3-0.5 and that the optimal pore diameter is in both cases 1.4-1.45 times smaller than the catalyst layer, independently of the internal catalyst diffusivity (Dint) and the other process variables. When the available inlet pressure is limiting (E>10−4), and when the absolute reactor productivity is more important than the volumetric productivity, it is found that much more open structures, with much wider pores are needed, i.e., perforated beds show the same behavior as packed beds, where the occurrence of a pressure-drop limitation also induces a shift from the use of full particles to the use of hollow extrudates.  相似文献   

15.
In order to obtain constant solid properties with particles exhibiting a low order of symmetry, it is necessary to monitor and to control several distributed parameters characterising the crystal shape and size. A bi-dimensional population balance model was developed to simulate the time variations of two characteristic sizes of crystals. The nonlinear population balance equations were solved numerically over the bi-dimensional size domain using the so-called method of classes. An effort was made to improve usual simulation studies through the introduction of physical knowledge in the kinetic laws involved during nucleation and growth phenomena of complex organic products. The performances of the simulation algorithm were successfully assessed through the reproduction of two well-known theoretical and experimental features of ideal continuous crystallization processes: the computation of size-independent growth rates from the plot of the steady-state crystal size distribution and the possibility for MSMPR crystallizers to exhibit low-frequency oscillatory behaviours in the case of insufficient secondary nucleation.  相似文献   

16.
Due to their superior heat transfer properties, microstructured reactors are well suited for performing strongly exothermic heterogeneously catalyzed gas phase reactions. In order to utilize the full potential of this reaction technology, a new low-cost manufacturing concept was developed, using a Ni–Ag–Sn solder system for bonding the individual structured steel platelets. Three different methods for depositing a VOx/γ-Al2O3 material on the micro-channels were investigated with respect to morphology, mechanical stability and catalytic behavior of the obtained coatings. Especially the influence of different binder materials (Al-tri-sec-butylate, tetraethoxysilane, hydroxypropyl cellulose and polyvinyl pyrrolidone) was analyzed. For evaluating the performance of the coatings, the oxidative dehydrogenation of propane (ODP) served as a sensitive test reaction. The modules and the catalytic coatings withstood the applied reaction conditions (400–600 °C at ambient pressure), which makes them safe and flexible tools for research activities and small scale production processes.  相似文献   

17.
A new mechanistic model for reactions involving two liquid phases and a homogeneous phase transfer catalyst (PTC) has been developed based on extraction mechanism considering the equilibrium of catalyst and active catalysts at the interface. The proposed kinetic model considers thermodynamic framework based aqueous phase ionic equilibrium and the separate contributions of non-PTC and PTC-enhanced reactions towards the overall reactions. The developed model was then applied to an industrially important reaction of benzyl chloride with aqueous ammonium sulfide for synthesis of dibenzyl sulfide and benzyl mercaptan. The kinetic parameters of the developed model were estimated at different temperatures using an indigenously developed non-linear regression technique based on modified Levenberg-Marquardt algorithm. Sensitivity analysis was then performed under various experimental conditions using the estimated parameters and the results were compared with experimental observations. A good agreement was observed between experimental and calculated values with proper trends of the results.  相似文献   

18.
A fluidised bed reactor with liquid recycle (FBR) and an external loop gas lift reactor (GLR) were designed for the production of isopropanol—butanol mixtures by immobilised Clostridium spp. and scaled down to laboratory scale (part I). Hydrodynamic models were set up for the two laboratory scale reactors. Liquid mixing in the 10 dm3 FBR was described by 10 tanks in series. Fluidisation velocities, bed expansions and axial dispersion coefficients agreed well with literature data. Liquid mixing in the 15 dm3 GLR was described by 100 tanks in series. The gas hold-up and circulation velocity were found to decrease with increasing hold-up of solids, in accordance with literature indications. No influence of the hold-up of solids on the axial dispersion coefficient was determined. An integrated reactor model was set up for both reactors, using the hydrodynamic and kinetic model. Actual fermentation data are presented and compared with model predictions in part III of this study; this part will also include a comparison of reactor performances and scale up aspects.  相似文献   

19.
An impedance model capable of predicting the time-dependent blood pressure and flow profiles in all of the vessels in the human arterial network has been developed. The model is based on a Womersley-type one-dimensional in space approximation of the pulsatile flow of a viscous fluid within elastic vessels. Nominal values from the literature are used to provide the input aortic pressure wave, the geometric dimensions of large arteries, various blood properties, vessel elasticity, etc. The necessary information to characterize the smaller arteries, arterioles and capillaries is taken from a physical scaling model [West, G. (1999). The origin of scaling laws in biology. Physica Acta, 263, 104-113]. The parameters, input setup, and the subsequent solution to the model equations have been efficiently implemented within MATLAB, which also allows for a variety of output information displays. The MATLAB implementation also allows for a comprehensive sensitivity analysis of the results to various input parameter values to be effortlessly obtained.  相似文献   

20.
In this contribution the technical feasibility of the reverse flow catalytic membrane reactor (RFCMR) concept with porous membranes for energy efficient syngas production is investigated. In earlier work an experimental proof of principle was already provided [Smit, J., Bekink, G.J., van Sint Annaland, M., Kuipers, J.A.M., 2005a. A reverse flow catalytic membrane reactor for the production of syngas: an experimental study. International Journal of Chemical Reactor Engineering 3 (A12)], but compensatory heating was required and problems related to the mechanical strength of the powder-based YsZ catalyst and the steel filter were reported. Therefore, in Part 1 the performance of a Rh-Pt/Al2O3 catalyst with improved mechanical strength and porous Al2O3 membranes with excellent temperature resistance was tested in an isothermal membrane reactor. For this purpose a novel sealing technique was developed that could withstand sufficiently high pressure differences and temperatures. Very high syngas selectivities close to the thermodynamic equilibrium could be achieved for a considerable period of time without any increase in pressure drop and without any decrease in syngas selectivity. Using the Rh-Pt/Al2O3 catalyst, several experiments were performed in a RFCMR demonstration unit and the influence of different operating conditions and design parameters on the reactor behaviour was investigated. It is shown that very high syngas selectivities (up to 95%) can be achieved with a maximal on-stream time of 12 h, without using any compensatory heating and despite inevitable radial heat losses. In Part 2 a reactor model is discussed that can well describe the experimental results presented in this part.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号