首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pervaporation is a promising option to enhance conversion of reversible condensation reactions, generating water as a by-product. In this work, composite catalytic membranes for pervaporation-assisted esterification processes are prepared. Catalytic zeolite H-USY layers have been deposited on silica membranes by dip-coating using TEOS and Ludox AS-40 as binder material. Membrane pre-treatment and the addition of binder to the dip-coat suspension appear to be crucial in the process. Tuning of catalytic layer thickness is possible by varying the number of dip-coat steps. This procedure avoids failure of the coating due to the high stresses, which can occur in thicker coatings during firing. In the pervaporation-assisted esterification reaction the H-USY coated catalytic pervaporation membrane was able to couple catalytic activity and water removal. The catalytic activity is comparable to the activity of the bulk zeolite catalyst. The collected permeate consists mainly of water and the loss of acid, alcohol and ester through the membrane is negligible. The performance of the membrane reactor is mainly limited by reaction kinetics and can be improved by using a more active catalyst.  相似文献   

2.
In this study, isobutyl acetate, a valuable solvent in cosmetics, aroma and paint industries, is produced by pervaporation–esterification equilibrium reaction in a batch pervaporation membrane reactor (PVMR) using homogeneous (sulphuric acid) and heterogeneous (Dowex 50W-X8) catalysts. The effects of catalyst loading, catalyst type, reaction time, membrane thickness, temperature and initial molar ratio of reactants were investigated. A cross-linked polydimethylsiloxane (PDMS) membrane selective to esters was prepared and used in PVMR. Batch reactions were carried out also in a simple batch reactor (SBR) without pervaporation under the same conditions to compare the conversions for the reactions with and without pervaporation. In conclusion, PVMR experiments showed that the PDMS membrane can be used to remove the isobutyl acetate formed selectively with acceptable conversions and pervaporation fluxes.  相似文献   

3.
The aromatization of propane is investigated for Ga2O3, H-ZSM-5 and Ga2O3/H-ZSM-5 catalysts, and the results are discussed for a series of ZSM-5 catalysts containing varying SiO2/Al2O3 ratios. It is apparent that on addition of a gallium phase to H-ZSM-5, the yield of methane is significantly decreased. These results are discussed with respect to the mechanism of formation of the initial reaction product from propane. It is proposed that the synergy observed between the gallium compound and the zeolite can be explained in terms of a mechanism in which the role of the gallium phase is to induce C-H bond polarization in the propane, which leads to attack via the Bronsted acid sites of the zeolite, which leads to initial C-H bond cleavage occurring.  相似文献   

4.
The aromatisation of propane has been studied using Ga2O3, H-ZSM-5 and physical mixtures of Ga2O3/H-ZSM-5 as catalysts. Experiments using co-fed reactants of H2, O2 and NO are described, together with the use of 2-chloro-propane as a model reactant. The results are discussed in terms of a mechanism for the formation of the initial product propene in which propane is activated at the interface between the gallium oxide and the zeolite. The system is therefore an example of contact synergy and furthermore experiments are described that provide evidence for the reversible formation for the active site for this catalyst system.  相似文献   

5.
ZSM-5 zeolite membrane, which shows high selectivity toward olefins in the methanol conversion, was developed by controlling the location of the acid sites. First, the ZSM-5 zeolite catalyst membrane without pinholes was successfully prepared by synthesizing a ZSM-5 zeolite layer on an outer surface of a cylindrical alumina ceramic filter. The membrane was used as the catalytic membrane reactor to recover olefins from methanol. Though the olefins were successfully produced from methanol with high selectivity (ca. 80%), production of paraffin and aromatics was observed at the feed side of the zeolite membrane. To prevent the such production, the location of the acid site of the ZSM-5 zeolite membrane was controlled by a new method called the catalytic cracking of silane (CCS) method. Selective deactivation of acid sites at the outer surface of the zeolite membrane (feed side of reactant) by the CCS method allowed us to increase the selectivity of the olefins by 10% as compared to the untreated membrane.  相似文献   

6.
作为循环烃替代原料,国内某批次的液化石油气(LPG)中含有微量的杂质,且杂质含量高于Lurgi公司的甲醇选择性制丙烯(MTP)技术要求。本工作研究了该LPG中杂质对MTP催化剂结构和性能的影响。结果表明,LPG与甲醇共进料时,催化剂表现出了良好的催化活性、抗结焦性和再生性能。ICP测试显示在气相反应条件下,LPG中微量杂质在催化剂上未有明显的沉积现象。XRD表征说明反应前后和再生催化剂的骨架结构保存完好。NH3-TPD表征显示反应前后和再生催化剂的弱酸位数量未发生明显变化。这表明可以利用工业LPG作为循环烃的替代原料。  相似文献   

7.
A two-dimensional non-isothermal mathematical model has been developed for the ethane dehydrogenation reaction in a fixed-bed catalytic membrane reactor. Since ethane dehydrogenation is an equilibrium reaction, removal of produced hydrogen by the membrane shifts the thermodynamic equilibrium to ethylene production. For further displacement of the dehydrogenation reaction, oxidative dehydrogenation method has been used. Since ethane dehydrogenation is an endothermic reaction, the energy produced by the oxidative dehydrogena-tion method is consumed by the dehydrogenation reaction. The results show that the oxidative dehydrogenation method generated a substantial improvement in the reactor performance in terms of high conversions and significant energy saving. It was also established that the sweep gas velocity in the shell side of the reactor is one of the most important factors in the effectiveness of the reactor.  相似文献   

8.
AgCl/H-ZSM-5催化分解NO反应及失活机理   总被引:5,自引:2,他引:3  
采用水热分散法制备了AgCl/H-ZSM-5催化剂,并对其催化分解NO的反应进行了研究。运用X-射线衍射(XRD)、固体魔角旋转核磁共振(MASNMR)和能量色散X-射线微区分析(EDAX)对Ag-Cl/H-ZSM-5催化剂进行表征,着重阐明AgCl/H-ZSM-5催化剂在NO分解反应过程中活性相、载体的结构变化与催化分解NO反应活性的关系。  相似文献   

9.
《Chemical engineering science》2002,57(13):2531-2544
A two-dimensional model has been used to simulate the oxidative dehydrogenation of butane on a two-layer catalytic membrane (diffusion layer and V/MgO active layer) operating with segregated reactant feeds. The model considers plug flow on both sides of the membrane, uses an extended Fick's law expression to describe multi-component diffusion in the radial direction, and a complex kinetic scheme to account for the reaction network. The simulation study shows that different feed configurations lead to marked differences on the partial pressure profiles of the different species across the membrane, and explains the performance order (in terms of the selectivity-conversion behaviour) that was observed experimentally. Similarly, the behaviour observed for membranes with catalytic layers of different width was justified by taking into account the variation of the oxygen partial pressure across the active zone of the membrane.  相似文献   

10.
改性ZSM-5分子筛是一种具有较强催化活性的醛氨缩合催化剂,具有反应条件温和、择形选择性高、副产物较少等优点。醛氨缩合反应是制备烷基吡啶最具代表性的反应路线之一,用BET、SEM、XRD和IR等技术考察了Co-Pb-ZSM-5分子筛的物理化学特性,并将其用于醛氨缩合反应。结果表明,通过浸渍法使Co2+、Pb2+进入了ZSM-5分子筛骨架中,对醛氨缩合反应有较高的催化活性。采用Co-Pb-ZSM-5分子筛,烷基吡啶的产率可达75%以上。  相似文献   

11.
The selectivity of partial hydrogenation reactions of unsaturated substrates was studied in a membrane reactor operating at 323 K and 40 bar hydrogen pressure. The reactor system was constructed as a loop of a saturation vessel and a membrane module in which the reaction mixture was resaturated with hydrogen up to 100 times. In a porous membrane made from cross-linked polyacrylic acid palladium nanoparticles were incorporated as catalysts. A well-defined residence time within the membrane was achieved due to a defined pore structure of the membrane and a convective mass flow of the reaction mixture through the membrane. The selectivity for the partially hydrogenated products was investigated as a function of the pore size of the PAA membrane and was compared to commercially available catalysts. Compared to experiments with supported catalysts (Pd/C and Pd/Al2O3) in a slurry and a fixed bed reactor the selectivity for the desired products could be increased by 3% (1-octyne) up to 40% (geraniol).  相似文献   

12.
Shape-selective properties of octadecyltrichlorosilane-treated H-ZSM-5, abbreviated as H-ZSM-5-C18, have been observed in the hydrolysis of esters having some rings and lactones in toluene-water solvent system. The shape-selectivity for the reaction has been evaluated by the ratio of the relative rate constants in comparison with the rate constant of methyl acetate. The selectivity became higher with increase in bulkiness of the substrate. Substrates having the minimum diameter larger than 6.5 Å, significantly larger in size than the pore openings of ZSM-5, could not react in this system.  相似文献   

13.
A wet air oxidation reaction was carried out in a gas/liquid catalytic membrane reactor of the contactor type. The oxidation of formic acid was used as a model reaction. The mesoporous top-layer of a ceramic tubular membrane was used as catalyst (Pt) support, and was placed at the interface of the gas (air) and liquid (HCOOH solution) phases.

A similar reaction was carried out in a conventional batch reactor, using a steering rate high enough to avoid gas-diffusion limitations, and exactly identical conditions than for the CMR (amount of catalyst, pressure, etc.). At room temperature, the CMR showed an initial activity three to six times higher than the conventional reactor. This activity increase was attributed to an easier oxygen access to the catalytic sites. Nevertheless, the catalytic membrane gradually deactivated after a few hours of operation. Different deactivation mechanisms are presented.  相似文献   


14.
Whereas NO adsorption at room temperature on activated H-ZSM-5 (Si/Al = 29) caused only negligible changes in its IR spectrum, addition on O2 to NO led to the appearance of bands at 2133 and 977 cm-1. Concomitantly, the number of acidic zeolite OH groups decreased while H2O hydrogen-bonded to zeolite OH groups developed. Introduction of small amounts of 18O2 did not change the 2133 cm-1 band wavenumber, nor the use of a partly deuteroxylated D–H-ZSM-5 sample. In such a case, HOD formation was detected. The results obtained evidence that the 2133 cm-1 band, generally considered as characterizing NO+ 2 species, is, in fact, due to NO+ species occupying cationic positions in the zeolite. The 977 cm-1 band is attributed to the Olattice–NO+ vibration. A scheme of the NO+ formation, involving NO2 molecules as NO oxidizing agent, is proposed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
A laboratory module for senior-level reaction engineering/reactor design students is described. Students use low-conversion experimental data to explore and characterize the kinetics of ammonia decomposition over various supported catalysts at atmospheric pressure in a packed-bed reactor. Each student team is assigned one of four catalyst types, a reactor temperature, and a series of feed flow rates and compositions. Aggregate data from all student groups is then summarily analyzed per catalyst type. In each experimental trial, the reactor conversion is determined by a thermal conductivity measurement applied to the feed (reactor bypass) and reactor effluent gases. An analysis of the reaction rate across a range of temperatures and varying feed gas partial pressures allows students to test various reaction mechanisms, to suggest rate-determining steps, and to statistically determine rate law parameters. Students typically use the Langmuir–Hinshelwood–Hougen–Watson (LHHW) approach to derive rate law expressions, and determine rate constants through application of the Arrhenius equation. High student numbers (ca. 140) are accommodated through the availability of four experimental stations — each sharing a common source of feed gas and equipped with independent flow controllers and gas analyzers.  相似文献   

16.
Reduction of low concentration of nitric oxide (NO) with methane as a reductant under wet conditions has been investigated using Pd/Co/H-ZSM-5 catalysts and the effects brought about by coexistence of Pd and Co are discussed. The role of Co is attributed to the acceleration of oxidation of NO to NO2, which is the necessary species for reduction of NO with CH4 on Pd sites. A Pd/H-ZSM-5 loading of 1 wt% Co shows a maximum activity for NO reduction as well as for NO oxidation. Excess loading of Co led to a decrease in activity for NO reduction. An XPS study shows that Pd and Co are well dispersed inside the zeolite when the concentrations of Pd and Co are less than 1 wt%. Loading of excess Co, however, causes aggregation of Pd on the surface of ZSM-5.  相似文献   

17.
富氧条件Co/H-ZSM-5催化剂上CH4选择催化还原NO的研究   总被引:2,自引:0,他引:2  
采用离子交换法制备了一系列具有不同硅铝比和不同Co负载量的Co/H-ZSM-5催化剂样品。富氧条件下考察了硅铝比、Co负载量、空速、O2浓度及酸位对催化剂选择催化还原活性的影响。并对其进行了XRD、BET、H2-TPR和DRS-UV-vis等表征。催化结果表明,催化剂的催化活性随Co负载量的增加而增加,随硅铝比的增加而减少;NO转化率随着空速的增加而降低。O2体积分数为2%时,NO达最大转化率。表征结果表明,Co2+为活性中心,酸中心的存在对催化活性有一定的促进作用。  相似文献   

18.
The kinetics of the esterification reaction of propionic acid with 1-propanol over the ion-exchange resin Dowex 50Wx8-400 has been studied in this investigation. Kinetic experiments were conducted using a 1 L Lab-Max system at a stirrer speed of 900 rpm over a temperature range of 303.15 -333.15 K. The catalyst loading was varied from 10 to 60 g dry cat/L and acid to alcohol molar ratios of 1:1, 1:2, 1:4, 2:1 and 4:1 were employed. The equilibrium constants for this reaction were determined in separate experiments at 303.15, 313.15 and 323.15 K. The values were equal to 33.18, 30.62 and 28.37, respectively, with a standard enthalpy change of reaction of 6.4 kJ/mol. These values show the reaction to be mildly exothermic. It was found that both external and internal diffusion limitations did not affect the overall reaction rate. The conversion of propionic acid increased with increasing temperature and catalyst loading and decreased with increasing initial mole fraction of acid. The increase in chain length of acid or alcohol or branching had a retarding effect on the conversion. Several kinetic models were tested to correlate the kinetic data, the pseudo-homogeneous (P-H) model, the Eley-Rideal (E-R) model, the Langmuir-Hinshelwood (L-H) model, the modified Eley-Rideal (M-E-R) model and the modified Langmuir-Hinshelwood (M-L-H) model. In all models, the activity coefficients were estimated using UNIFAC to account for the non-ideal thermodynamic behavior of reactants and products. A correction factor for the resin affinity for water (α) was used in both M-E-R and M-L-H models. The above models predicted the kinetic behavior of the studied system with an overall error ranging from 1.65% to 13.32%. Water was found to be more strongly adsorbed than other species present in the system. The M-E-R model between adsorbed 1-propanol and non-adsorbed propionic acid which assumes surface reaction as the rate controlling step, with α equal to 2, was found to be the best model with the least overall error (1.65%). The activation energy for the esterification was estimated to be 67.3 kJ/mol by this model.  相似文献   

19.
The aromatisation of propane was investigated at 823 K on two Ga/H-ZSM-5 catalysts differing by their aluminum content (Si/Al = 18 and 128, respectively), i.e. their Brönsted acid site concentration, and having similar gallium content (1.6 wt%) as a function of successive pretreatments by hydrogen and oxygen. Hydrogen treatment increases activity and selectivity to aromatics while decreasing the formation of methane. Subsequent oxygen treatment enhances further the activity and aromatics selectivity and has little effect on methane selectivity. These improvements of catalytic performance are explained by gallium migration in reducing conditions. The concentration of highly dispersed gallium species is thereby enhanced. These species, in association with Bronsted centers, were reported previously to constitute the dual catalytic sites responsible for alkane activation. Hydrogen-oxygen pretreatment of Ga/H-ZSM-5 catalysts is thus a means to ensure rapid catalyst preactivation and stabilisation in large scale light alkane aromatisation units.  相似文献   

20.
An experimental module for senior-level reaction engineering/reactor design students is described. The module is used to characterize the kinetics of dye (food coloring) neutralization by household bleach, and the reactor system is configurable for use in either batch reactor or continuous-stirred tank reactor (CSTR) modes. The reactor temperature, volume, reactant feed rates, and reactant concentrations may be adjusted to enable students to obtain a wide range of kinetic data. Dye concentrations in the reactor are monitored by absorbance spectroscopy, and the kinetic rate law is determined directly from the batch reactor performance data. Students use the completed kinetic rate law to compare experimental steady-state CSTR performance data to the mathematical models derived from reactor design equations. Finally, the students use the kinetic behavior of the system to design a hypothetical plug-flow reactor for the same chemical reaction and a set of stated operational goals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号